Skip to main content
Log in

Synthetic morphogenesis: why reverse engineering should be prioritized

  • Letter
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Davies JA (2008) Synthetic morphology: prospects for engineered, self-constructing anatomies. J Anat 6(212):707–719. https://doi.org/10.1111/j.1469-7580.2008.00896.x

    Article  Google Scholar 

  2. Pedde RD, Mirani B, Navaei A et al (2017) Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 29(19):1606061. https://doi.org/10.1002/adma.201606061

    Article  Google Scholar 

  3. Dvir T, Timko BP, Kohane DS et al (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 1(6):13–22. https://doi.org/10.1038/nnano.2010.246

    Article  Google Scholar 

  4. Simunovic M, Brivanlou AH (2017) Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144(6):976–985. https://doi.org/10.1242/dev.143529

    Article  Google Scholar 

  5. Sahu S, Sharan SK (2020) Translating embryogenesis to generate organoids: novel approaches to personalized medicine. Iscience 23(9):101485. https://doi.org/10.1016/j.isci.2020.101485

    Article  Google Scholar 

  6. Baillie-Benson P, Moris N, Arias AM (2020) Pluripotent stem cell models of early mammalian development. Curr Opin Cell Biol 66:89–96. https://doi.org/10.1016/j.ceb.2020.05.010

    Article  Google Scholar 

  7. Guye P, Ebrahimkhani MR, Kipniss N et al (2016) Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun 7:10243. https://doi.org/10.1038/ncomms10243

    Article  Google Scholar 

  8. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25:1491–1498. https://doi.org/10.1101/gr.190595.115

    Article  Google Scholar 

  9. Brown BD, Genther B, Cantore A et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467. https://doi.org/10.1038/nbt1372

    Article  Google Scholar 

  10. Miki K, Endo K, Takahashi S et al (2015) Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16:699–711. https://doi.org/10.1016/j.stem.2015.04.005

  11. Ma H, Tu LC, Naseri A et al (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34(5):528–530. https://doi.org/10.1038/nbt.3526

    Article  Google Scholar 

  12. Kiani S, Chavez A, Tuttle M et al (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 12(11):1051–1054. https://doi.org/10.1038/nmeth.3580

    Article  Google Scholar 

  13. Carvalho A, Menendez DB, Senthivel VR et al (2014) Genetically encoded sender-receiver system in 3D mammalian cell culture. ACS Synth Biol 3:264–272. https://doi.org/10.1021/sb400053b

  14. Cachat E, Liu W, Martin KC et al (2016) 2-and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation. Sci Rep 6:20664. https://doi.org/10.1038/srep20664

    Article  Google Scholar 

  15. Morsut L, Roybal KT, Xiong X et al (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164(4):780–791. https://doi.org/10.1016/j.cell.2016.01.012

    Article  Google Scholar 

  16. Toda S, Blauch LR, Tang SK et al (2018) Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361(6398):156–162. https://doi.org/10.1126/science.aat0271

    Article  Google Scholar 

  17. Dong L, Wang SJ, Zhao XR et al (2017) 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-13838-7

    Article  Google Scholar 

  18. Xu Y, Peng J, Richards G et al (2019) Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly (ε-caprolactone) scaffold for cartilage tissue engineering. J Orthop Transl 18:128–141. https://doi.org/10.1016/j.jot.2019.05.003

    Google Scholar 

  19. Khattab MM, Dahman Y (2020) Synthesis and characterization of cellulose nanowhisker-reinforced-poly (ε-caprolactone) scaffold for tissue-engineering applications. J Appl Polym Sci 137(12):48481. https://doi.org/10.1002/app.48481

    Article  Google Scholar 

  20. Ausländer S, Ausländer D, Fussenegger M (2017) Synthetic biology—the synthesis of biology. Angew Chem Int Ed 56(23):6396–6419. https://doi.org/10.1002/anie.201609229

    Article  Google Scholar 

  21. Fan C, Davison PA, Habgood R et al (2020) Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proc Natl Acad Sci 117(12):6752–6761. https://doi.org/10.1073/pnas.1918859117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VNN conceived and supervised the study; MYS contributed to methodology and helped in writing—original draft; MYN and MYS investigated the study; all authors contributed to writing—review and editing.

Corresponding author

Correspondence to M. Y. Sinelnikov.

Ethics declarations

Conflict of interest

V. N. Nikolenko, M. Yu Nikolayev, and M. Y. Sinelnikov declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolenko, V.N., Nikolayev, M.Y. & Sinelnikov, M.Y. Synthetic morphogenesis: why reverse engineering should be prioritized. Bio-des. Manuf. 4, 429–431 (2021). https://doi.org/10.1007/s42242-021-00127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00127-6

Navigation