Skip to main content
Log in

Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Inspired by the constitution of things in the natural world, three-dimensional (3D) nanofiber scaffold/cells complex was constructed via the combination of electrospinning technology and origami techniques. The nanofiber boxes prepared by origami provided a limited space for the layer-by-layer nanofiber films, and the human fetal osteoblasts (hFOBs) seeded on the both sides of the nanofiber films were expected to facilitate the bonding of the adjacent nanofiber films through the secretion of extracellular matrix. Specifically, the hFOBs presented 3D distribution in the nanofiber scaffold, and they can stretch across the gaps between the adjacent nanofiber films, forming the cell layers and filling the whole 3D nanofiber scaffold. Eventually, a 3D block composed of electrospun nanofiber scaffold and cells was obtained, which possesses potential applications in bone tissue engineering. Interestingly, we also created 3D nanofiber structures that range from simple forms to intricate architectures via origami, indicating that the combination of electrospinning technology and origami techniques is a feasible method for the 3D construction of tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO(2) membranes for photovoltaic applications. Nanotechnology 17(4):1026–1031

    Article  Google Scholar 

  2. Jiang S, Liu F, Lerch A, Ionov L, Agarwal S (2015) Unusual and superfast temperature-triggered actuators. Adv Mater 27(33):4865–4870

    Article  Google Scholar 

  3. Liu L, Jiang SH, Sun Y, Agarwal S (2016) Giving direction to motion and surface with ultra-fast speed using oriented hydrogel fibers. Adv Funct Mater 26(7):1021–1027

    Article  Google Scholar 

  4. Formo E, Lee E, Campbell D, Xia Y (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8(2):668–672

    Article  Google Scholar 

  5. Xu WH, Ding YC, Jiang SH, Zhu J, Ye W, Shen YL, Hou HQ (2014) Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Europ Polym J 59:129–135

    Article  Google Scholar 

  6. Xu WH, Ding YC, Jiang SH, Chen LL, Liao XJ, Hou HQ (2014) Polyimide/BaTiO3/MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Mater Lett 135:158–161

    Article  Google Scholar 

  7. Yang CR, Jia ZD, Guan ZC, Wang LM (2009) Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries. J Power Sources 189(1):716–720

    Article  Google Scholar 

  8. Ye W, Zhu J, Liao XJ, Jiang SH, Li YH, Fang H, Hou HQ (2015) Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources 299:417–424

    Article  Google Scholar 

  9. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  Google Scholar 

  10. Sayed E, Karavasili C, Ruparelia K, Haj-Ahmad R, Charalambopoulou G, Steriotis T, Giasafaki D, Cox P, Singh N, Giassafaki LN, Mpenekou A, Markopoulou CK, Vizirianakis IS, Chang MW, Fatouros DG, Ahmad Z (2018) Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. J Control Release 278:142–155

    Article  Google Scholar 

  11. Wu S, Li JS, Mai J, Chang MW (2018) Three-dimensional electrohydrodynamic printing and spinning of flexible composite structures for oral multidrug forms. ACS Appl Mater Interfaces 10(29):24876–24885

    Article  Google Scholar 

  12. Wang BL, Ahmad Z, Huang J, Li JS, Chang MW (2018) Development of random and ordered composite fiber hybrid technologies for controlled release functions. Chem Eng J 343:379–389

    Article  Google Scholar 

  13. Liu J, Yue Z, Fong H (2009) Continuous nanoscale carbon fibers with superior mechanical strength. Small 5(5):536–542

    Article  Google Scholar 

  14. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  15. Zhang CC, Gao CC, Chang MW, Ahmad Z, Li JS (2016) Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter. Appl Phys Lett 109(15):151903

    Article  Google Scholar 

  16. Seidlits SK, Lee JY, Schmidt CE (2008) Nanostructured scaffolds for neural applications. Nanomedicine (London) 3(2):183–199

    Article  Google Scholar 

  17. Liu X, Wei D, Zhong J, Ma M, Zhou J, Peng X, Ye Y, Sun G, He D (2015) Electrospun nanofibrous P(DLLA-CL) balloons as calcium phosphate cement filled containers for bone repair: in vitro and in vivo studies. ACS Appl Mater Interfaces 7(33):18540–18552

    Article  Google Scholar 

  18. Sun G, Wei D, Liu X, Chen Y, Li M, He D, Zhong J (2013) Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures. Nanomedicine 9(6):829–838

    Article  Google Scholar 

  19. Duan GG, Jiang SH, Jerome V, Wendorff JH, Fathi A, Uhm J, Altstadt V, Herling M, Breu J, Freitag R, Agarwal S, Greiner A (2015) Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions. Adv Funct Mater 25(19):2850–2856

    Article  Google Scholar 

  20. Hsu PC, Wang S, Wu H, Narasimhan VK, Kong D, Ryoung Lee H, Cui Y (2013) Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat Commun 4:2522

    Article  Google Scholar 

  21. Wang XF, Ding B, Sun G, Wang MR, Yu JY (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243

    Article  Google Scholar 

  22. Lee WS, Sunkara V, Han JR, Park YS, Cho YK (2015) Electrospun TiO2 nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood. Lab Chip 15(2):478–485

    Article  Google Scholar 

  23. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890

    Article  Google Scholar 

  24. Jin G, Shin M, Kim SH, Lee H, Jang JH (2015) SpONGE: spontaneous organization of numerous-layer generation by electrospray. Angew Chem Int Ed Engl 54(26):7587–7591

    Article  Google Scholar 

  25. Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E (2010) Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 6(4):1227–1237

    Article  Google Scholar 

  26. Badrossamay MR, McIlwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261

    Article  Google Scholar 

  27. Zhang D, Chang J (2008) Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Lett 8(10):3283–3287

    Article  Google Scholar 

  28. Wang L, Ahmad Z, Huang J, Li JS, Chang MW (2017) Multi-compartment centrifugal electrospinning based composite fibers. Chem Eng J 330:541–549

    Article  Google Scholar 

  29. Paneva D, Manolova N, Rashkov I, Penchev H, Mihai M, Dragan ES (2010) Self-organization of fibers into yarns during electrospinning of polycation/polyanion polyelectrolyte pairs. Dig J Nanomater Bio 5(4):811–819

    Google Scholar 

  30. Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482

    Article  Google Scholar 

  31. Wang BL, Zhou WY, Chang MW, Ahmad Z, Li JS (2017) Impact of substrate geometry on electrospun fiber deposition and alignment. J Appl Polym Sci 134(19):44823

    Google Scholar 

  32. Zhao S, Zhou Q, Long YZ, Sun GH, Zhang Y (2013) Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates. Nanoscale 5(11):4993–5000

    Article  Google Scholar 

  33. Zhang DM, Chang J (2007) Patterning of electrospun fibers using electroconductive templates. Adv Mater 19(21):3664

    Article  Google Scholar 

  34. Yang H, Dong L (2009) Selective nanofiber deposition using a microfluidic confinement approach. Langmuir 26(3):1539–1543

    Article  Google Scholar 

  35. Ding Z, Salim A, Ziaie B (2009) Selective nanofiber deposition through field-enhanced electrospinning. Langmuir 25(17):9648–9652

    Article  Google Scholar 

  36. Shim IK, Suh WH, Lee SY, Lee SH, Heo SJ, Lee MC, Lee SJ (2009) Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res A 90(2):595–602

    Article  Google Scholar 

  37. Shim IK, Jung MR, Kim KH, Seol YJ, Park YJ, Park WH, Lee SJ (2010) Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: fabrication and bone regeneration. J Biomed Mater Res B Appl Biomater 95(1):150–160

    Article  Google Scholar 

  38. Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K (2009) Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 91(4):994–1005

    Article  Google Scholar 

  39. Hull TC (2005) Origami design secrets: mathematical methods for an ancient art. Math Intell 27(2):92–95

    Article  Google Scholar 

  40. Christian BA (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230

    Article  Google Scholar 

  41. Mahadevan L, Rica S (2005) Self-organized origami. Science 307(5716):1740

    Article  Google Scholar 

  42. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CL (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76

    Article  Google Scholar 

  43. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414

    Article  Google Scholar 

  44. Gracias DH, Kavthekar V, Love JC, Paul KE, Whitesides GM (2002) Fabrication of micrometer-scale, patterned polyhedra by self-assembly. Adv Mater 14(3):235

    Article  Google Scholar 

  45. Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH (2009) Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci USA 106(3):703–708

    Article  Google Scholar 

  46. Bassik N, Stern GM, Jamal M, Gracias DH (2008) Patterning thin film mechanical properties to drive assembly of complex 3D structures. Adv Mater 20(24):4760–4764

    Article  Google Scholar 

  47. Cho J-H, Gracias DH (2009) Self-assembly of lithographically patterned nanoparticles. Nano Lett 9(12):4049–4052

    Article  Google Scholar 

  48. Guo X, Li H, Ahn BY, Duoss EB, Hsia KJ, Lewis JA, Nuzzo RG (2009) Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc Natl Acad Sci USA 106(48):20149–20154

    Article  Google Scholar 

  49. Syms RR, Yeatman EM, Bright VM, Whitesides GM (2003) Surface tension-powered self-assembly of microstructures-the state-of-the-art. J Microelectromech Syst 12(4):387–417

    Article  Google Scholar 

  50. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98(15):156103

    Article  MATH  Google Scholar 

  51. Szczepanowicz K, Dronka-Gora D, Para G, Warszynski P (2010) Encapsulation of liquid cores by layer-by-layer adsorption of polyelectrolytes. J Microencapsul 27(3):198–204

    Article  Google Scholar 

  52. Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050

    Article  Google Scholar 

  53. Song J, Zhu G, Wang L, An G, Shi X, Wang Y (2017) Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Biofabrication 9(1):015–018

    Article  Google Scholar 

  54. Okamoto M, Dohi Y, Ohgushi H, Shimaoka H, Ikeuchi M, Matsushima A, Yonemasu K, Hosoi H (2006) Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med 17(4):327–336

    Article  Google Scholar 

  55. Yang C-Y, Lee T-M, Yang C, Chen L, Wu M, Lui T (2007) In vitro and in vivo biological responses of plasma-sprayed hydroxyapatite coatings with posthydrothermal treatment. J Biomed Mater Res A 83(2):263–271

    Article  Google Scholar 

  56. Meng Z, Zheng W, Li L, Zheng Y (2010) Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Mater Sci Eng C 30(7):1014–1021

    Article  Google Scholar 

  57. Lee K, Kim H, Khil M, Ra Y, Lee D (2003) Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer 44(4):1287–1294

    Article  Google Scholar 

  58. Nojima S, Hashizume K, Rohadi A, Sasaki S (1997) Crystallization of ε-caprolactone blocks within a crosslinked microdomain structure of poly(ε-caprolactone)-block-polybutadiene. Polymer 38(11):2711–2718

    Article  Google Scholar 

  59. Chen J-P, Chang Y-S (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloid Surf B 86(1):169–175

    Article  Google Scholar 

  60. Wan C, Chen B (2011) Poly (ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomed Mater 6(5):055010

    Article  Google Scholar 

  61. Arraiza AL, Sarasua J, Verdu J, Colin X (2007) Rheological behavior and modeling of thermal degradation of poly (ε-caprolactone) and poly(l-lactide). Int Polym Process 22(5):389–394

    Article  Google Scholar 

  62. Ma H, Su W, Tai Z, Sun D, Yan X, Liu B, Xue Q (2012) Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin Sci Bull 57(23):3051–3058

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the National Natural Science Foundation of China (51232002, 51502095, 31771027), the Guangdong Natural Science Funds for Distinguished Young Scholar (2016A030306018) and the Guangdong Natural Science Funds (2017B090911008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuetao Shi or Yingjun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 642 kb)

Supplementary material 2 (MOV 15823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zhu, G., Gao, H. et al. Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Bio-des. Manuf. 1, 254–264 (2018). https://doi.org/10.1007/s42242-018-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-018-0027-9

Keywords

Navigation