Skip to main content
Log in

Recent progress on the design and fabrication of micromotors and their biomedical applications

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The advancement in the micro-/nanofabrication techniques has greatly facilitated the development of micromotors. A variety of micromotors have been invented with powerful functions, which have attracted a broad range of interests from chemistry, physics, mechanics, biology and medicine. In this paper, we reviewed recent progress in micromotors and highlighted representative works. The mechanisms of micromotors by internal and external energy sources were described. We described general fabrication strategies of the popular micromotors (wire, tubular, helical and Janus) including bottom-up and top-down approaches. In the application section, we primarily focused on the biological applications, such as biological cargo delivery, biosensing and surgery. At last, we discussed the current challenges and provided future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self-assembly. Angew Chem Int Ed 41(4):652–654

    Google Scholar 

  2. Paxton WF, Kistler KC, Olmeda CC, Sen A, St Angelo SK, Cao YY, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424–13431

    Google Scholar 

  3. Santiago I (2018) Nanoscale active matter matters: challenges and opportunities for self-propelled nanomotors. Nano Today 19:11–15

    Google Scholar 

  4. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kang D, Bishop D, Sattayasamitsathit S, Zhang L, Wang J (2010) Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6(23):2741–2747

    Google Scholar 

  5. Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton EE, Zhang L, Lauga E (2012) Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3):460–467

    Google Scholar 

  6. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10):9232–9240

    Google Scholar 

  7. Sattayasamitsathit S, Kou H, Gao W, Thavarajah W, Kaufmann K, Zhang L, Wang J (2014) Fully loaded micromotors for combinatorial delivery and autonomous release of cargoes. Small 10(14):2830–2833

    Google Scholar 

  8. Baraban L, Makarov D, Streubel R, Moench I, Grimm D, Sanchez S, Schmidt OG (2012) Catalytic janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6(4):3383–3389

    Google Scholar 

  9. Wu Y, Wu Z, Lin X, He Q, Li J (2012) Autonomous movement of controllable assembled janus capsule motors. ACS Nano 6(12):10910–10916

    Google Scholar 

  10. Purcell EM (1977) Life at low Reynolds-number. Am J Phys 45(1):3–11

    Google Scholar 

  11. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107

    Google Scholar 

  12. Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG (2018) Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12:327

    Google Scholar 

  13. Mhanna R, Qiu F, Zhang L, Ding Y, Sugihara K, Zenobi-Wong M, Nelson BJ (2014) Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 10(10):1953–1957

    Google Scholar 

  14. Qiu F, Mhanna R, Zhang L, Ding Y, Fujita S, Nelson BJ (2014) Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens Actuators B-Chem 196:676–681

    Google Scholar 

  15. Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S, Castro LA, Hoyos M, Huang TJ, Mallouk TE (2013) Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29(52):16113–16118

    Google Scholar 

  16. Fan D, Yin Z, Cheong R, Zhu FQ, Cammarata RC, Chien CL, Levchenko A (2010) Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat Nanotechnol 5(7):545–551

    Google Scholar 

  17. Sanchez S, Solovev AA, Schulze S, Schmidt OG (2011) Controlled manipulation of multiple cells using catalytic microbots. Chem Commun 47(2):698–700

    Google Scholar 

  18. Solovev AA, Sanchez S, Pumera M, Mei YF, Schmidt OG (2010) Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv Funct Mater 20(15):2430–2435

    Google Scholar 

  19. Almawlawi D, Liu CZ, Moskovits M (1994) Nanowires formed in anodic oxide nanotemplates. J Mater Res 9(4):1014–1018

    Google Scholar 

  20. Mirkovic T, Foo ML, Arsenault AC, Fournier-Bidoz S, Zacharia NS, Ozin GA (2007) Hinged nanorods made using a chemical approach to flexible nanostructures. Nat Nanotechnol 2(9):565–569

    Google Scholar 

  21. Manesh KM, Cardona M, Yuan R, Clark M, Kagan D, Balasubramanian S, Wang J (2010) Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4(4):1799–1804

    Google Scholar 

  22. Schmidt OG, Eberl K (2001) Thin solid films roll up into nanotubes. Nature 410:168. https://doi.org/10.1038/35083701

    Article  Google Scholar 

  23. Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14):1688–1692

    Google Scholar 

  24. Mei Y, Huang G, Solovev AA, Ureña EB, Mönch I, Ding F, Reindl T, Fu RK, Chu PK, Schmidt OG (2008) Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv Mater 20(21):4085–4090

    Google Scholar 

  25. Mei Y, Solovev AA, Sanchez S, Schmidt OG (2011) Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev 40(5):2109–2119

    Google Scholar 

  26. Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52(27):7000–7003

    Google Scholar 

  27. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Google Scholar 

  28. Brett MJ, Hawkeye MM (2008) New materials at a glance. Science 319(5867):1192–1193

    Google Scholar 

  29. Jiang W, Rutherford D, Vuong T, Liu H (2017) Nanomaterials for treating cardiovascular diseases: a review. Bioact Mater 2(4):185–198

    Google Scholar 

  30. Jiang W, Liu H (2016) 11—Nanocomposites for bone repair and osteointegration with soft tissues. In: Liu H (ed) Nanocomposites for musculoskeletal tissue regeneration. Woodhead Publishing, Oxford, pp 241–257

    Google Scholar 

  31. Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704–8735

    Google Scholar 

  32. Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811–816

    Google Scholar 

  33. Gao W, Pei A, Dong R, Wang J (2014) Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc 136(6):2276–2279

    Google Scholar 

  34. Mou F, Chen C, Zhong Q, Yin Y, Ma H, Guan J (2014) Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces 6(12):9897–9903

    Google Scholar 

  35. Xuan M, Shao J, Lin X, Dai L, He Q (2014) Self-propelled janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. Chem Phys Chem 15(11):2255–2260

    Google Scholar 

  36. Paxton WF, Kistler KC, Olmeda CC, Sen A, St SK, Angelo Y, Cao TE, Mallouk PE, Lammert VH Crespi (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126:13424–13431

    Google Scholar 

  37. Fournier-Bidoz S, Arsenault AC, Manners I, Ozin GA (2005) Synthetic self-propelled nanorotors. Chem Commun 4:441–443

    Google Scholar 

  38. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130(26):8164–8165

    Google Scholar 

  39. Gao W, Sattayasamitsathit S, Orozco J, Wang J (2011) Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc 133(31):11862–11864

    Google Scholar 

  40. Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44(5):744–746

    Google Scholar 

  41. Wang Y, Hernandez RM, Bartlett DJ Jr, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25):10451–10456

    Google Scholar 

  42. Ma X, Hahn K, Sanchez S (2015) Catalytic mesoporous janus nanomotors for active cargo delivery. J Am Chem Soc 137(15):4976–4979

    Google Scholar 

  43. Peng F, Tu Y, Wilson DA (2017) Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev 46(17):5289–5310

    Google Scholar 

  44. Schattling P, Thingholm B, Stadler B (2015) Enhanced diffusion of glucose-fueled janus particles. Chem Mater 27(21):7412–7418

    Google Scholar 

  45. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290(5496):1555–1558

    Google Scholar 

  46. Ma X, Hortelao AC, Miguel-Lopez A, Sanchez S (2016) Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J Am Chem Soc 138(42):13782–13785

    Google Scholar 

  47. Li J, Thamphiwatana S, Liu W, de Avila BE-F, Angsantikul P, Sandraz E, Wang J, Xu T, Soto F, Ramez V, Wang X, Gao W, Zhang L, Wang J (2016) Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10(10):9536–9542

    Google Scholar 

  48. Gao W, Pei A, Wang J (2012) Water-driven micromotors. ACS Nano 6(9):8432–8438

    Google Scholar 

  49. Jiang W, Tian Q, Vuong T, Shashaty M, Gopez C, Sanders T, Liu H (2017) Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading. ACS Biomater Sci Eng 3(6):936–950

    Google Scholar 

  50. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798

    Google Scholar 

  51. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Google Scholar 

  52. Nguyen TY, Liew CG, Liu H (2013) An in vitro mechanism study on the proliferation and pluripotency of human embryonic stems cells in response to magnesium degradation. PLoS ONE 8(10):e76547

    Google Scholar 

  53. Jiang W, Cipriano AF, Tian Q, Zhang C, Lopez M, Sallee A, Lin A, Cortez Alcaraz MC, Wu Y, Zheng Y, Liu H (2018) In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomater 72:407–423

    Google Scholar 

  54. Muddana HS, Sengupta S, Mallouk TE, Sen A, Butler PJ (2010) Substrate catalysis enhances single-enzyme diffusion. J Am Chem Soc 132(7):2110–2111

    Google Scholar 

  55. Sengupta S, Dey KK, Muddana HS, Tabouillot T, Ibele ME, Butler PJ, Sen A (2013) Enzyme molecules as nanomotors. J Am Chem Soc 135(4):1406–1414

    Google Scholar 

  56. Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25(45):6581–6588

    Google Scholar 

  57. Vizsnyiczai G, Frangipane G, Maggi C, Saglimbeni F, Bianchi S, Di Leonardo R (2017) Light controlled 3D micromotors powered by bacteria. Nat Commun 8:15974

    Google Scholar 

  58. Fazal FM, Block SM (2011) Optical tweezers study life under tension. Nat Photonics 5(6):318–321

    Google Scholar 

  59. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Google Scholar 

  60. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77(1):205–228

    Google Scholar 

  61. Zhang N, Lock J, Sallee A, Liu H (2015) Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl Mater Interfaces 7(37):20987–20998

    Google Scholar 

  62. Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J (2010) Magnetically powered flexible metal nanowire motors. J Am Chem Soc 132(41):14403–14405

    Google Scholar 

  63. Xu X, Hou S, Wattanatorn N, Wang F, Yang Q, Zhao C, Yu X, Tseng H-R, Jonas SJ, Weiss PS (2018) Precision-guided nanospears for targeted and high-throughput intracellular gene delivery. ACS Nano 12(5):4503–4511

    Google Scholar 

  64. Fan DL, Zhu FQ, Xu X, Cammarata RC, Chien CL (2012) Electronic properties of nanoentities revealed by electrically driven rotation. Proc Natl Acad Sci USA 109(24):9309–9313

    Google Scholar 

  65. Liang Z, Fan D (2018) Visible light–gated reconfigurable rotary actuation of electric nanomotors. Sci Adv 4(9):eaau0981

    Google Scholar 

  66. Xu X, Kim K, Liu C, Fan D (2015) Fabrication and robotization of ultrasensitive plasmonic nanosensors for molecule detection with Raman scattering. Sensors 15(5):10422–10451

    Google Scholar 

  67. Xu X, Kim K, Fan D (2015) Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem Int Ed 54(8):2525–2529

    Google Scholar 

  68. Kim K, Guo J, Xu X, Fan DL (2015) Recent progress on man-made inorganic nanomachines. Small 11(33):4037–4057

    Google Scholar 

  69. Kim K, Guo J, Xu X, Fan DE (2014) Micromotors with step-motor characteristics by controlled magnetic interactions among assembled components. ACS Nano 9(1):548–554

    Google Scholar 

  70. Xu X, Liu C, Kim K, Fan DL (2014) Electric-driven rotation of silicon nanowires and silicon nanowire motors. Adv Fun Mater 24(30):4843–4850

    Google Scholar 

  71. Kim K, Xu X, Guo J, Fan DL (2014) Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat Commun 5:3632

    Google Scholar 

  72. Xu X, Li H, Hasan D, Ruoff RS, Wang AX, Fan DL (2013) Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater 23(35):4332–4338

    Google Scholar 

  73. Xu X, Kim K, Li H, Fan DL (2012) Ordered arrays of Raman nanosensors for ultrasensitive and location predictable biochemical detection. Adv Mater 24(40):5457–5463

    Google Scholar 

  74. Xu X, Hasan D, Wang L, Chakravarty S, Chen RT, Fan DL, Wang AX (2012) Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy. Appl Phys Lett 100(19):191114

    Google Scholar 

  75. Ma X, Wang X, Hahn K, Sanchez S (2016) Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10(3):3597–3605

    Google Scholar 

  76. Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J (2015) Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1):117–123

    Google Scholar 

  77. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J (2010) Motion-based DNA detection using catalytic nanomotors. Nat Commun 1:36

    Google Scholar 

  78. García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, Merkoçi A, Wang J (2013) Micromotor-based lab-on-chip immunoassays. Nanoscale 5(4):1325–1331

    Google Scholar 

  79. Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH (2009) Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci 106(3):703–708

    Google Scholar 

  80. Randhawa JS, Leong TG, Bassik N, Benson BR, Jochmans MT, Gracias DH (2008) Pick-and-place using chemically actuated microgrippers. J Am Chem Soc 130(51):17238–17239

    Google Scholar 

  81. Medina-Sanchez M, Schwarz L, Meyer AK, Hebenstreit F, Schmidt OG (2016) Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett 16(1):555–561

    Google Scholar 

  82. Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-propelled nanotools. ACS Nano 6(2):1751–1756

    Google Scholar 

  83. Xi W, Solovev AA, Ananth AN, Gracias DH, Sanchez S, Schmidt OG (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5(4):1294–1297

    Google Scholar 

  84. Srivastava SK, Medina-Sanchez M, Koch B, Schmidt OG (2016) Medibots: dual-action biogenic microdaggers for single-cell surgery and drug release. Adv Mater 28(5):832–837

    Google Scholar 

  85. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed 51(30):7519–7522

    Google Scholar 

  86. He W, Frueh J, Hu N, Liu L, Gai M, He Q (2016) Guidable thermophoretic janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding. Adv Sci 3(12):1600206

    Google Scholar 

  87. Wang W, Castro LA, Hoyos M, Mallouk TE (2012) Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7):6122–6132

    Google Scholar 

  88. Tu Y, Peng F, Sui X, Men Y, White PB, van Hest JCM, Wilson DA (2016) Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nat Chem 9(5):480–486

    Google Scholar 

Download references

Acknowledgements

X.X. and W.J. acknowledge the support from Institute for Advanced Study and School of Material Science and Engineering of Tongji University. L.M. acknowledges the support from National Natural Science Foundation of China (Grant Nos. 81501607 and 51875518), as well as the support from Development Projects of Zhejiang Province (Grant No. 2017C1054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Ma, L. & Xu, X. Recent progress on the design and fabrication of micromotors and their biomedical applications. Bio-des. Manuf. 1, 225–236 (2018). https://doi.org/10.1007/s42242-018-0025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-018-0025-y

Keywords

Navigation