Skip to main content
Log in

UV irradiation-\(\hbox {H}_{2} \hbox {O}_{2}\) system as an effective combined depolymerization technique to produce oligosaccharides from chitosan

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

UV irradiation hydrogen peroxide (\(\hbox {H}_{2} \hbox {O}_{2}\)) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV–Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-\(\beta \)-d-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and Mark–Houwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

References

  1. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645

    Article  Google Scholar 

  2. Baldwin AD, Kiick KL (2010) Polysaccharide-modified synthetic polymeric biomaterials. Pept Sci 94(1):128–140

    Article  Google Scholar 

  3. Suh S, Kim S, Lee Y, Kim J (1994) Synthesis and characteristics of trimethylsilyl chitin. Polym Korea 18:906–906

    Google Scholar 

  4. Younes I, Hajji S, Frachet V, Rinaudo M, Jellouli K, Nasri M (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498

    Article  Google Scholar 

  5. Barikani M, Honarkar H, Barikani M (2010) Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatshefte für Chemie-Chemical Monthly 141(6):653–659

    Article  Google Scholar 

  6. Heidari F, Razavi M, Bahrololoom ME, Tahriri M, Rasoulianboroujeni M, Koturi H, Tayebi L (2016) Preparation of natural chitosan from shrimp shell with different deacetylation degree. Mater Res Innov 1–5

  7. Periayah MH, Halim AS, Saad AZM (2016) Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn Rev 10(19):39

    Article  Google Scholar 

  8. Subhapradha N, Ramasamy P, Shanmugam V, Madeswaran P, Srinivasan A, Shanmugam A (2013) Physicochemical characterisation of \(\beta \)-chitosan from Sepioteuthis lessoniana gladius. Food Chem 141(2):907–913

    Article  Google Scholar 

  9. Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Monatshefte für Chemie-Chemical Monthly 140(12):1403

    Article  Google Scholar 

  10. Ayati Najafabadi S, Keshvari H, Ganji Y, Tahriri M, Ashuri M (2012) Chitosan/heparin surface modified polyacrylic acid grafted polyurethane film by two step plasma treatment. Surf Eng 28(9):710–714

    Article  Google Scholar 

  11. Barikani M, Honarkar H, Barikani M (2009) Synthesis and characterization of polyurethane elastomers based on chitosan and poly (\(\varepsilon \)-caprolactone). J Appl Polym Sci 112(5):3157–3165

    Article  Google Scholar 

  12. Davoudi Z, Rabiee M, Houshmand B, Eslahi N, Khoshroo K, Rasoulianboroujeni M, Tahriri M, Tayebi L (2018) Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis. Drug Dev Ind Pharm 44(1):40–55

    Article  Google Scholar 

  13. Najafabadi SAA, Keshvari H, Sarkhosh H, Ashuri M, Tahriri M (2014) Surface modification of castor oil-based polyurethane by polyacrylic acid graft using a two-step plasma treatment for biomedical applications. Adv Polym Technol 33(3):21411–21419

    Article  Google Scholar 

  14. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49(4):780–792

    Article  Google Scholar 

  15. Raz M, Moztarzadeh F, Shokrgozar M, Ashuri M, Tahriri M (2013) Preparation, characterization and evaluation of mechanical and biological characteristics of hybrid apatite/gelatin-chitosan nanocomposite bone scaffold via biomimetic method. J Adv Mater Eng (Esteghlal) 32(2):25–42

    Google Scholar 

  16. Emami SH, Abad AMA, Bonakdar S, Tahriri MR, Samadikuchaksaraei A, Bahar MA (2010) Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate. Int J Mater Res 101(10):1281–1285

    Article  Google Scholar 

  17. Raz M, Moztarzadeh F, Shokrgozar MA, Azami M, Tahriri M (2014) Development of biomimetic gelatin-chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications. Int J Mater Res 105(5):493–501

    Article  Google Scholar 

  18. Choi C, Ahn J-H, Jeong G-W, Lee H-S, Choi S-J, Kim W-S, Nah J-W (2016) Preparation of nicotinic acid-loaded microspheres using water-soluble. Chitosan and investigation of their physicochemical characteristics. Polym Korea 40(4):643–650

    Article  Google Scholar 

  19. Anusha J, Raj CJ, Cho B-B, Fleming AT, Yu K-H, Kim BC (2015) Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli. Sens Actuators B Chem 215:536–543

    Article  Google Scholar 

  20. Xia Z, Wu S, Chen J (2013) Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide. Int J Biol Macromol 59:242–245

    Article  Google Scholar 

  21. Rege PR, Block LH (1999) Chitosan processing: influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosan’s properties. Carbohydr Res 321(3):235–245

    Article  Google Scholar 

  22. Huang QZ, Meng ZH, Feng YQ, Shi HZ (2010) Study on the heterogeneous degradation of chitosan with \({\rm H}_2{\rm O}_2\) catalyzed by a new supermolecular assembly crystal:[C\(_6\)H\(_8\)N\(_2\)]6H\(_3\)[PW\(_{12}\)O\(_{40}\)] \(\cdot \) 2H\(_2\)O. Carbohydr Res 345(1):115–119

    Article  Google Scholar 

  23. Qin C, Du Y, Xiao L (2002) Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym Degrad Stab 76(2):211–218

    Article  Google Scholar 

  24. Xie Y, Hu J, Wei Y, Hong X (2009) Preparation of chitooligosaccharides by the enzymatic hydrolysis of chitosan. Polym Degrad Stab 94(10):1895–1899

    Article  Google Scholar 

  25. Lee J-J, Lee W-H, Shin Y-I, Paek S-H (2012) Effects of UV irradiation and thermal treatment of photo-degradable polyimide layer on LC alignment. Polym Korea 36(2):145–148

    Article  Google Scholar 

  26. Ma F, Wang Z, Zhao H, Tian S (2012) Plasma depolymerization of chitosan in the presence of hydrogen peroxide. Int J Mol Sci 13(6):7788–7797

    Article  Google Scholar 

  27. Choi S-K, Choi Y-S (2011) Depolymerization of alginates by hydrogen peroxide/ultrasonic irradiation. Polym Korea 35(5):444–450

    Google Scholar 

  28. Kang B, Dai Y-D, Zhang H-Q, Chen D (2007) Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polym Degrad Stab 92(3):359–362

    Article  Google Scholar 

  29. Huei CR, Hwa H-D (1996) Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydr Polym 29(4):353–358

    Article  Google Scholar 

  30. Knaul JZ, Kasaai MR, Bui VT, Creber KA (1998) Characterization of deacetylated chitosan and chitosan molecular weight review. Can J Chem 76(11):1699–1706

    Google Scholar 

  31. Yue W (2014) Prevention of browning of depolymerized chitosan obtained by gamma irradiation. Carbohydr Polym 101:857–863

    Article  Google Scholar 

  32. Andrady AL, Torikai A, Kobatake T (1996) Spectral sensitivity of chitosan photodegradation. J Appl Polym Sci 62(9):1465–1471

    Article  Google Scholar 

  33. Sionkowska A, Płanecka A, Lewandowska K, Kaczmarek B, Szarszewska P (2013) Influence of UV-irradiation on molecular weight of chitosan. Prog Chem Appl Chitin Deriv 18(18):21–28

    Google Scholar 

  34. Li SD, Zhang CH, Dong JJ, Ou CY, Quan WY, Yang L, She XD (2010) Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr Polym 81(2):182–187

    Article  Google Scholar 

  35. de Britto D, de Assis OB (2007) Synthesis and mechanical properties of quaternary salts of chitosan-based films for food application. Int J Biol Macromol 41(2):198–203

    Article  Google Scholar 

  36. Huang QZ, Wang SM, Huang JF, Zhuo LH, Guo YC (2007) Study on the heterogeneous degradation of chitosan with hydrogen peroxide under the catalysis of phosphotungstic acid. Carbohydr Polym 68(4):761–765

    Article  Google Scholar 

  37. Li J, Cai J, Zhong L, Du Y (2012) Immobilization of a protease on modified chitosan beads for the depolymerization of chitosan. Carbohydr Polym 87(4):2697–2705

    Article  Google Scholar 

  38. Belamie E, Domard A, Giraud-Guille MM (1997) Study of the solid-state hydrolysis of chitosan in presence of HCl. J Polym Sci A Polym Chem 35(15):3181–3191

    Article  Google Scholar 

  39. Yue W, Yao P, Wei Y (2009) Influence of ultraviolet-irradiated oxygen on depolymerization of chitosan. Polym Degrad Stab 94(5):851–858

    Article  Google Scholar 

  40. Tian F, Liu Y, Hu K, Zhao B (2004) Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydr Polym 57(1):31–37

    Article  Google Scholar 

  41. Dhawade PP, Jagtap RN (2012) Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res 3(3):1372

    Google Scholar 

  42. Le Dung P, Milas M, Rinaudo M, Desbrières J (1994) Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydr Polym 24(3):209–214

    Article  Google Scholar 

  43. Duan J, Kasper DL (2010) Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology 21(4):401–409

    Article  Google Scholar 

  44. Tanioka S, Matsui Y, Irie T, Tanigawa T, Tanaka Y, Shibata H, Sawa Y, Kono Y (1996) Oxidative depolymerization of chitosan by hydroxyl radical. Biosci Biotechnol Biochem 60(12):2001–2004

    Article  Google Scholar 

  45. Rees MD, Kennett EC, Whitelock JM, Davies MJ (2008) Oxidative damage to extracellular matrix and its role in human pathologies. Free Radical Biol Med 44(12):1973–2001

    Article  Google Scholar 

  46. Tian F, Liu Y, Hu K, Zhao B (2003) The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci 38(23):4709–4712

    Article  Google Scholar 

  47. Hsu S-C, Don T-M, Chiu W-Y (2002) Free radical degradation of chitosan with potassium persulfate. Polym Degrad Stab 75(1):73–83

    Article  Google Scholar 

Download references

Acknowledgements

The work was done in Department of Nutrition and Food Sciences at Isfahan University of Medical Sciences, Iran. We would like to especially thank Mr. Yahaii, for helping to prepare materials. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Tahriri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafabadi, S.A.A., Honarkar, H., Moghadam, M. et al. UV irradiation-\(\hbox {H}_{2} \hbox {O}_{2}\) system as an effective combined depolymerization technique to produce oligosaccharides from chitosan. Bio-des. Manuf. 1, 62–68 (2018). https://doi.org/10.1007/s42242-018-0005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-018-0005-2

Keywords

Navigation