Analysis of dipole noise level characteristics of NACA0015 hydrofoil under different working conditions

Abstract

In this paper, the flow field around NACA0015 hydrofoil is calculated under the condition of two-phase cavitating flow to provide a theoretical guidance for reducing the cavitation noise. A modified turbulence model coupled with the Zwart cavitation model is used to calculate the flow field. According to the computed sound source data, the dipole sound pressure distribution diagrams for the extremely short time and the complete time around the hydrofoil under different working conditions are obtained. The sound pressure distribution and the sound pressure amplitude are analyzed in detail. In addition, the field points around the hydrofoil are selected to generate the corresponding frequency response function curves, which are analyzed from the aspects of the trend, the variation and the extreme value. The results show that the dipole characteristics are gradually diminished and finally disappear with the increase of the frequency. At the frequency of the vapor volume fraction fluctuation, the noise level at the field point will have an extreme value.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Yu A., Luo X. W., Yang D. D. et al. Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions [J]. Engineering Computations, 2018, 35(3): 1528–1542.

    Article  Google Scholar 

  2. [2]

    Wimshurst A., Vogel C., Willden R. Cavitation limits on tidal turbine performance [J]. Ocean Engineering, 2018, 152: 223–233.

    Article  Google Scholar 

  3. [3]

    Zhang Y. N., Jiang Z. B., Yuan J. et al. Influences of bubble size distribution on propagation of acoustic waves in dilute polydisperse bubbly liquids [J]. Journal of Hydrodynamics, 2019, 31(1): 50–57.

    Article  Google Scholar 

  4. [4]

    Ji B., Luo X., Peng X. et al. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake [J]. International Journal of Multiphase Flow, 2012, 43: 13–21.

    Article  Google Scholar 

  5. [5]

    Long X. P., Zuo D., Cheng H. Y. et al. Large eddy simulation of the transient cavitating vortical flow in a jet pump with special emphasis on the unstable limited operation stage [J]. Journal of Hydrodynamics, 2020, 32((2): 345–360.

    Article  Google Scholar 

  6. [6]

    Huang H. B., Long Y., Ji B. Experimental investigation of vortex generator influences on propeller cavitation and hull pressure fluctuations [J]. Journal of Hydrodynamics, 2020, 32(1): 82–92.

    Article  Google Scholar 

  7. [7]

    Wack J., Riedelbauch S. Numerical simulations of the cavitation phenomena in a Francis turbine at deep part load conditions [J]. Journal of Physics Conference, 2015, 656: 012074.

    Article  Google Scholar 

  8. [8]

    Konno A., Wakabayashi K., Yamaguchi H. On the mechanism of the bursting phenomena of propeller tip vortex cavitation [J]. Journal of Marine Science and Technology, 2002, 6(4): 181–192.

    Article  Google Scholar 

  9. [9]

    Liu J. T., Wu Y. L., Liu S. H. Study of unsteady cavitation flow of a pump-turbine at pump mode [J]. IOP Conference Series: Materials Science and Engineering, 2013, 52: 062021.

    Article  Google Scholar 

  10. [10]

    Huang B., Qiu S. C., Li X. B. et al. A review of transient flow structure and unsteady mechanism of cavitating flow [J]. Journal of Hydrodynamics, 2019, 31(3): 429–444.

    Article  Google Scholar 

  11. [11]

    Aktas B., Atlar M., Turkmen S. et al. Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials [J]. Ocean Engineering, 2016, 120: 122–135.

    Article  Google Scholar 

  12. [12]

    Wei Y., Shen Y., Jin S. et al. Scattering effect of submarine hull on propeller non-cavitation noise [J]. Journal of Sound and Vibration, 2016, 370: 319–335.

    Article  Google Scholar 

  13. [13]

    Lafeber F. H., Bosschers J., Wijngaarden E. V. Computational and experimental prediction of propeller cavitation noise [C]. Oceans, 2015, IEEE, Genova, Italy, 2015.

    Google Scholar 

  14. [14]

    Zhang Y. K., Xiong Y., Ye J. M. Experimental investigations of influence of gas content in water to propeller cavitation noise [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2009, 33(2): 234–237 (in Chinese).

    Google Scholar 

  15. [15]

    Bao F., Wang X., Tao Z. et al. EMD-based extraction of modulated cavitation noise [J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2124–2136.

    Article  Google Scholar 

  16. [16]

    Lee J. H., Seo J. S. Application of spectral kurtosis to the detection of tip vortex cavitation noise in marine propeller [J]. Mechanical Systems and Signal Processing, 2013, 40(1): 222–236.

    Article  Google Scholar 

  17. [17]

    Zhang L., Huang J., Zhang Q. Spectral analysis of noise characteristics caused by ship propeller cavitation [C]. OCEANS 2006- Asia Pacific, IEEE, Singapore, 2007.

    Google Scholar 

  18. [18]

    Yasui K., Tuziuti T., Lee J. et al. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles [J]. Ultrasonics Sonochemistry, 2009, 17(2): 460–472.

    Article  Google Scholar 

  19. [19]

    Lee K., Lee J., Kim D. et al. Propeller sheet cavitation noise source modeling and inversion [J]. Journal of Sound and Vibration, 2014, 333(5): 1356–1368.

    Article  Google Scholar 

  20. [20]

    Zhang F. H., Liu H. F., Xu J. C. et al. Experimental investigation on cavitation noise of water jet and its chaotic behavior [J]. Applied Mechanics and Materials, 2011, 121–126: 3919–3924.

    Article  Google Scholar 

  21. [21]

    Bertetta D., Brizzolara S., Gaggero S. et al. CPP propeller cavitation and noise optimization at different pitches with panel code and validation by cavitation tunnel measurements [J]. Ocean Engineering, 2012, 53(1): 177–195.

    Article  Google Scholar 

  22. [22]

    Wang J., Cheng H., Xu S. et al. Performance of cavitation flow and its induced noise of different jet pump cavitation reactors [J]. Ultrasonics Sonochemistry, 2019, 55: 322–331.

    Article  Google Scholar 

  23. [23]

    Wittekind D., Schuster M. Propeller cavitation noise and background noise in the sea [J]. Ocean Engineering, 2016, 120: 116–121.

    Article  Google Scholar 

  24. [24]

    Camerotto E., Brems S., Hauptmann M. et al. Influence of surface tension on cavitation noise spectra and particle removal efficiency in high frequency ultrasound fields [J]. Journal of Applied Physics, 2012, 112(11): 114322.

    Article  Google Scholar 

  25. [25]

    Bao F., Wang X., Tao Z. et al. Adaptive extraction of modulation for cavitation noise [J]. The Journal of the Acoustical Society of America, 2009, 126(6): 3106.

    Article  Google Scholar 

  26. [26]

    Wang G., Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil [J]. Applied Mathematical Modelling, 2007, 31(3): 417–447.

    Article  Google Scholar 

  27. [27]

    Zwart P., Gerber A., Belamri T. A two-phase flow model for predicting cavitation dynamics [C]. Fifth International Conference on Multiphase Flow, Yokohama, Japan, 2004.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to An Yu.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51806058), the Fundamental Research Funds for the Central Universities (Grant No. B200202170).

Biography An Yu (1989-), Male, Ph. D., Lecturer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Wang, Yf., Tang, Qh. et al. Analysis of dipole noise level characteristics of NACA0015 hydrofoil under different working conditions. J Hydrodyn (2021). https://doi.org/10.1007/s42241-021-0002-3

Download citation

Key words

  • Cavitating flow
  • dipole noise
  • sound field distribution
  • frequency response