Experimental study of an ellipsoidal particle in tube Poiseuille flow


Behaviors of a prolate ellipsoid inside circular tube Poiseuille flow are studied experimentally. In the study, Reynolds number Re ∈ (100,700) and the confinement ratio D/A ∈ (1.2,2.8) are considered, where D is the diameter of the tube and A is the length of the major axis of the ellipsoid. Two typical stable motion modes are identified, namely, the horizontal, and inclined modes. Then another inclined mode (inclined mode II) is found at high Reynolds number (Re ∈ (1000,3200)) and small D/A, and the inclined angle of ellipsoid increases with the increase of Re. The possible mechanism is explained. Our experiment shows that the lagging velocity U increases as Re increases. Further numerical analysis using FLUENT shows that due to the increase of U, the moment acting on the particle would make the inclined angle of the particle increase.

This is a preview of subscription content, log in to check access.


  1. [1]

    Zheng J., Cai J., Wang D. Suspended particle motion close to the surface of rotating cylindrical filtering membrane [J]. Physics of Fluids, 2019, 31(5): 053302.

    Article  Google Scholar 

  2. [2]

    Huang H., Wu Y., Lu X. Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method [J]. Physical Review E, 2012, 86(4): 046305.

    Article  Google Scholar 

  3. [3]

    Huang H., Yang X., Krafczyk M. et al. Rotation of spheroidal particles in Couette flows [J]. Journal of Fluid Mechanics, 2012, 692: 369–394.

    MathSciNet  Article  Google Scholar 

  4. [4]

    Jeffery G. B. The motion of ellipsoidal particles immersed in a viscous fluid [J]. Proceedings of the Royal Society London Series A, 1922, 102(715): 161–179.

    MATH  Google Scholar 

  5. [5]

    Qi D., Luo L. S. Rotational and orientational behavior of three-dimensional spheroidal particles in Couette flows [J]. Journal of Fluid Mechanics, 2003, 477: 201–213.

    Article  Google Scholar 

  6. [6]

    Yu Z., Phan-Thien N., Tanner R. I. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers [J]. Physical Review E, 2007, 76(2): 026310.

    Article  Google Scholar 

  7. [7]

    Choi C. R., Kim C. N. Direct numerical simulations of the dynamics of particles with arbitrary shapes in shear flows [J]. Journal of Hydrodynamics, 2010, 22(4): 456–465.

    Article  Google Scholar 

  8. [8]

    Huang H., Yang X., Lu X. Y. Sedimentation of an ellipsoidal particle in narrow tubes [J]. Physics of Fluids, 2014, 26(5): 053302.

    Article  Google Scholar 

  9. [9]

    Han Y. F., Ning M. Theoretical and experimental studies of the transport process of micro-particles in static water [J]. Journal of Hydrodynamics, 2015, 26(6): 875–881.

    Article  Google Scholar 

  10. [10]

    Mendez Y. A flow model for the settling velocities of nonspherical particles in creeping motion, Part ii [J]. Journal of Applied Fluid Mechanics, 2012, 5(4): 123–130.

    Google Scholar 

  11. [11]

    Seger G., Silberberg A. Radial particle displacements in Poiseuille flow of suspensions [J]. Nature, 1961, 189: 209–210.

    Article  Google Scholar 

  12. [12]

    Matas J. P., Morris J. F., Guazzelli E. Inertial migration of rigid spherical particles in Poiseuille flow [J]. Journal of Fluid Mechanics, 2004, 515: 171–195.

    Article  Google Scholar 

  13. [13]

    Li D., Xuan X. Electrophoretic slip-tuned particle migration in microchannelviscoelastic fluid flows [J]. Physical Review Fluids, 2018, 3(7): 074202.

    Article  Google Scholar 

  14. [14]

    Karnis A., Goldsmith H., and Mason S. The flow of suspensions through tubes: V. Inertial effects [J]. The Canadian Journal of Chemical Engineering, 1966, 44(4): 181–193.

    Article  Google Scholar 

  15. [15]

    Byeon H. J., Seo K. W., Lee S. J. Precise measurement of three-dimensional positions of transparent ellipsoidal particles using digital holographic microscopy [J]. Applied optics, 2015, 54(8): 2106–2112.

    Article  Google Scholar 

  16. [16]

    du Roure O., Lindner A., Nazockdast E. N. et al. Dynamics of flexible fibers in viscous flows and fluids [J]. Annual Review of Fluid Mechanics, 2019, 51(1): 539–572.

    MathSciNet  Article  Google Scholar 

  17. [17]

    Yang B. H., Wang J., Joseph D. D. et al. Migration of a sphere in tube flow [J]. Journal of Fluid Mechanics, 2005, 540: 109–131.

    Article  Google Scholar 

  18. [18]

    Yu Z., Phan-Thien N., Tanner R. I. Dynamic simulation of sphere motion in a vertical tube [J]. Journal of Fluid Mechanics, 2004, 518: 61–93.

    Article  Google Scholar 

  19. [19]

    Feng J., Hu H. H., Joseph D. D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows [J]. Journal of Fluid Mechanics, 1994, 277: 271–301.

    Article  Google Scholar 

  20. [20]

    Huang H., Lu X. Y. An ellipsoidal particle in tube Poiseuille flow [J]. Journal of Fluid Mechanics, 2017, 822: 664–688

    MathSciNet  Article  Google Scholar 

  21. [21]

    Pan T. W., Chang C. C., Glowinski R. On the motion of a neutrally buoyant ellipsoid in a three-dimensional Poiseuille flow [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25–28): 2198–2209.

    MathSciNet  Article  Google Scholar 

  22. [22]

    Başağaoğlu H., Succi S., Wyrick D. et al. Particle shape influences settling and sorting behavior in microfluidic domains [J]. Scientific Reports, 2018, 8(1): 1–11.

    Article  Google Scholar 

  23. [23]

    Snook B., Butler J. E., Guazzelli E. Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow [J]. Journal of Fluid Mechanics, 2016, 786: 128–153.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hai-bo Huang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 11772326).

Biography: Yuan-feng Cui (1997-), Male, Undergraduate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chang, X. & Huang, H. Experimental study of an ellipsoidal particle in tube Poiseuille flow. J Hydrodyn 32, 616–622 (2020). https://doi.org/10.1007/s42241-020-0034-0

Download citation

Key words

  • Ellipsoidal particle
  • Poiseuille flow
  • circular tube
  • experiment