Skip to main content
Log in

Comparisons and analyses of vortex identification between Omega method and Q criterion

  • Special Column for Symposium on Vortex Identification Methods and Applications (Guest Editor Yu-Ning Zhang)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The present paper presents comparisons of the vortex identification between the omega method and the Q criterion based on the data of a classical flow. From the comparisons of the vortex structure together with the flow statistics, some important conclusions are drawn on the validity of the two methods, as follows. The omega method can identify various kinds of vortices with different intensities (e.g., the strong vortex, the medium vortex and the weak vortex). For the Q criterion, due to the subjective threshold selection, only the strong vortex with weak deformations could be identified. Finally, some emerging topics related with the advanced vortex identification methods are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J]. Renewable and Sustainable Energy Reviews, 2018, 81(Part 1): 1269–1285.

    Article  Google Scholar 

  2. Hunt J. C. R., Wray A. A., Moin P. Eddies, streams, and convergence zones in turbulent flows [C]. Studying Turbulence Using Numerical Simulation Databases, Proceedings of the 1988 Summer Program, San Francisco, USA, 1988, 193–208.

    Google Scholar 

  3. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

  4. Dong X., Tian S., Liu C. Correlation analysis on volume vorticity and vortex in late boundary layer transition [J]. Physics of Fluids, 2018, 30(1): 014105.

    Article  Google Scholar 

  5. Dong X., Dong G., Liu C. Study on vorticity structures in late flow transition [J]. Physics of Fluids, 2018, 30(10): 104108.

    Article  Google Scholar 

  6. Zhang Y. N., Qiu X., Chen F. P. et al. A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5): 767–779.

    Article  Google Scholar 

  7. Liu C., Wang Y. Q., Yang Y. et al. New omega vortex identification method [J]. Science China Physics, Mechanics and Astronomy, 2016, 59(8): 1–9.

    Article  Google Scholar 

  8. Dong X. R., Wang Y. Q., Chen X. P. et al. Determination of epsilon for omega vortex identification method [J]. Journal of Hydrodynamics, 2018, 30(4): 541–548.

    Article  Google Scholar 

  9. Liu C., Gao Y., Tian S. et al. Rortex a new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  10. Gao Y., Liu C. Rortex and comparison with eigenvaluebased vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  11. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods-Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): https://doi.org/10.1007/s42241-019-0022-4

    Google Scholar 

  12. Li Y., Zhao S., Tagawa K. et al. Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine [J]. Energy Conversion and Management, 2018, 167: 70–80.

    Article  Google Scholar 

  13. Li Y., Wang S., Liu Q. et al. Characteristics of ice accretions on blade of the straight-bladed vertical axis wind turbine rotating at low tip speed ratio [J]. Cold Regions Science and Technology, 2018, 145: 1–13.

    Article  Google Scholar 

  14. Li X., Jiang Z., Zhu Z. et al. Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(24): 4637–4646.

    Google Scholar 

  15. Li X., Gao P., Zhu Z. et al. Effect of the blade loading distribution on hydrodynamic performance of a centrifugal pump with cylindrical blades [J]. Journal of Mechanical Science and Technology, 2018, 32(3): 1161–1170.

    Article  Google Scholar 

  16. Liu Y., Tan L. Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode [J]. Renewable energy, 2018, 129: 606–615.

    Article  Google Scholar 

  17. Hao Y., Tan L. Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode [J]. Renewable Energy, 2018, 127: 368–376.

    Article  Google Scholar 

  18. Zhang Y., Zhang Y., Wu Y. A review of rotating stall in reversible pump turbine [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(7): 1181–1204.

    Google Scholar 

  19. Li D., Wang H., Qin Y. et al. Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model [J]. Renewable energy, 2018, 115: 433–447.

    Article  Google Scholar 

  20. Li D., Wang H., Li Z. et al. Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode [J]. Renewable Energy, 2018, 118: 973–983.

    Article  Google Scholar 

  21. Zhang Y., Chen T., Li J. et al. Experimental study of load variations on pressure fluctuations in a prototype reversible pump turbine in generating mode [J]. Journal of Fluids Engineering, 2017, 139(7): 074501.

    Article  Google Scholar 

  22. Zhang Y., Zheng X., Li J. et al. Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station [J]. Renewable Energy, 2019, 130: 667–676.

    Article  Google Scholar 

  23. Zhang S., Li X., Hu B. et al. Numerical investigation of attached cavitating flow in thermo-sensitive fluid with special emphasis on thermal effect and shedding dynamics [J]. International Journal of Hydrogen Energy, 2019, 44(5): 3170–3184.

    Article  Google Scholar 

  24. Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J]. Journal of Fluid Mechanics, 2018, 841: 287–309.

    Article  Google Scholar 

  25. Zhang A. M., Cui P., Cui J. et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–160.

    Article  Google Scholar 

  26. Zhang Y., Zhang Y., Li S. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation [J]. Ultrasonics Sonochemistry, 2017, 35(Part A): 431–439.

    Article  Google Scholar 

  27. Klapcsik K., Varga R., Hegedus F. Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate [J]. Nonlinear Dynamics, 2018 94(4): 2373–2389.

    Article  Google Scholar 

  28. Klapcsik K., Hegedus F. The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble [J]. Chaos Solitons and Fractals, 2017, 104: 198–208.

    Article  Google Scholar 

  29. Zhang Y. N., Jiang Z. B., Yuan J. et al. Influences of bubble size distribution on propagation of acoustic waves in dilute polydisperse bubbly liquids [J]. Journal of Hydrodynamics, 2019, 31(1): 50–57.

    Article  Google Scholar 

  30. Zhang Y., Guo Z., Du X. Wave propagation in liquids with oscillating vapor-gas bubbles [J]. Applied Thermal Engineering, 2018, 133(3): 483–492.

    Article  Google Scholar 

  31. Zhang Y., Zhang Y., Qian Z. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303–318.

    Article  MathSciNet  Google Scholar 

  32. Zhang Y., Chen F., Zhang Y. et al. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle [J]. Experimental Thermal and Fluid Science, 2018, 98: 645–661.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Foundation of Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education), North China Electric Power University (Grant No. NDZG201807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51606221, 51506051).

Biography: Yu-ning Zhang (1983-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yn., Wang, Xy., Zhang, Yn. et al. Comparisons and analyses of vortex identification between Omega method and Q criterion. J Hydrodyn 31, 224–230 (2019). https://doi.org/10.1007/s42241-019-0025-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0025-1

Key words

Navigation