Skip to main content

Advertisement

Log in

Development of a fully coupled aero-hydro-mooring-elastic tool for floating offshore wind turbines

  • Special Colomn 13Th Openfoam (OFW 13) (Guest Editdr De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A floating offshore wind turbine (FOWT) is a coupled system where a wind turbine with flexible blades interacts with a moored platform in wind and waves. This paper presents a high-fidelity aero-hydro-mooring-elastic analysis tool developed for FOWT applications. A fully coupled analysis is carried out for an OC4 semi-submersible FOWT under a combined wind/wave condition. Responses of the FOWT are investigated in terms of platform hydrodynamics, mooring dynamics, wind turbine aerodynamics and blade structural dynamics. Interactions between the FOWT and fluid flow are also analysed by visualising results obtained via the CFD approach. Through this work, the capabilities of the tool developed are demonstrated and impacts of different parts of the system on each other are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WindEurope. The European offshore wind industry: Key trends and statistics 2016 [R]. Brussels, Belgium: WindEurope, 2017.

  2. Roddier D., Cermelli C., Aubault A. et al. WindFloat: A floating foundation for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy, 2010, 2(3: 033104).

    Article  Google Scholar 

  3. Coulling A. J., Goupee A. J., Robertson A. N. et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data [J]. Journal of Renewable and Sustainable Energy, 2013, 5(2: 023116).

    Article  Google Scholar 

  4. Skaare B., Nielsen F. G., Hanson T. D. et al. Analysis of measurements and simulations from the Hywind Demo floating wind turbine [J]. Wind Energy, 2015, 18(6: 1105–1122).

    Article  Google Scholar 

  5. EWEA. Deep water: The next step for offshore wind energy [R]. Brussels, Belgium: European Wind Energy Association, 2013.

  6. Bachynski E. E., Kvittem M. I., Luan C. et al. Wind-wave misalignment effects on floating wind turbines: Motions and tower load effects [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4: 041902).

    Article  Google Scholar 

  7. Karimirad M., Michailides C. Dynamic analysis of a braceless semisubmersible offshore wind turbine in operational conditions [J]. Energy Procedia, 2015, 80: 21–29).

    Article  Google Scholar 

  8. Oguz E., Clelland D., Day A. H. et al. Experimental and numerical analysis of a TLP floating offshore wind turbine [J]. Ocean Engineering, 2018, 147: 591–605).

    Article  Google Scholar 

  9. Li L., Liu Y., Yuan Z. et al. Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines [J]. Energy, 2018, 157: 379–390).

    Article  Google Scholar 

  10. Sebastian T., Lackner M. A. Development of a free vortex wake method code for offshore floating wind turbines [J]. Renewable Energy, 2012, 46: 269–275).

    Article  Google Scholar 

  11. Liu F., Chen J., Qin H. Frequency response estimation of floating structures by representation of retardation functions with complex exponentials [J]. Marine Structures, 2017, 54: 144–166).

    Article  Google Scholar 

  12. Nematbakhsh A., Olinger D. J., Tryggvason G. A nonlinear computational model of floating wind turbines [J]. Journal of Fluids Engineering, 2013, 135(12: 121103).

    Article  Google Scholar 

  13. Tran T. T., Kim D. H. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147: 104–119).

    Article  Google Scholar 

  14. Nematbakhsh A., Bachynski E. E., Gao Z. et al. Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches [J]. Applied Ocean Research, 2015, 53: 142–154).

    Article  Google Scholar 

  15. Subbulakshmi A., Sundaravadivelu R. Heave damping of spar platform for offshore wind turbine with heave plate [J]. Ocean Engineering, 2016, 121: 24–36).

    Article  Google Scholar 

  16. Tran T. T., Kim D. H. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion [J]. Renewable Energy, 2016, 90: 204–228).

    Article  Google Scholar 

  17. Liu Y., Xiao Q., Incecik A. et al. Investigation of the effects of platform motion on the aerodynamics of a floating offshore wind turbine [J]. Journal of Hydrodynamics, 2016, 28(1: 95–101).

    Article  Google Scholar 

  18. Wu C. H. K., Nguyen V. T. Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion [J]. Wind Energy, 2017, 20(5: 835–858).

    Article  Google Scholar 

  19. Quallen S., Xing T. CFD simulation of a floating offshore wind turbine system using a variable-speed generatortorque controller [J]. Renewable Energy, 2016, 97: 230–242).

    Article  Google Scholar 

  20. Tran T. T., Kim D. H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach [J]. Renewable Energy, 2016, 92: 244–261).

    Article  Google Scholar 

  21. Leble V., Barakos G. Demonstration of a coupled floating offshore wind turbine analysis with high-fidelity methods [J]. Journal of Fluids and Structures, 2016, 62: 272–293).

    Article  Google Scholar 

  22. Liu Y., Xiao Q., Incecik A. et al. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines [J]. Renewable Energy, 2017, 112: 280–301).

    Article  Google Scholar 

  23. Liu Y., Xiao Q., Incecik A. A coupled CFD/MultiBody Dynamics analysis tool for offshore wind turbines with aeroelastic blades [C]. 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 2017.

    Google Scholar 

  24. Liu Y., Xiao Q., Incecik A. et al. Aeroelastic analysis of a floating offshore wind turbine in platform-induced surge motion using a fully coupled CFD-MBD method [J]. Wind Energy, 2019, 22(1: 1–20).

    Article  Google Scholar 

  25. Cao H., Wan D. Development of multidirectional nonlinear numerical wave tank by naoe-FOAM-SJTU solver [J]. International Journal of Ocean System Engineering, 2014, 4(1: 52–59).

    Article  Google Scholar 

  26. Shen Z. R., Wan D. C. An irregular wave generating approach based on naoe-FOAM-SJTU solver [J]. China Ocean Engineering, 2016, 30(2: 177–192).

    Article  MathSciNet  Google Scholar 

  27. Menter F. R. Review of the shear-stress transport turbulence model experience from an industrial perspective [J]. International Journal of Computational Fluid Dynamics, 2009, 23(4: 305–316).

    Article  MATH  Google Scholar 

  28. Hirt C. W., Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1: 201–225).

    Article  MATH  Google Scholar 

  29. Ghiringhelli G. L., Masarati P., Mantegazza P. Multibody implementation of finite volume C(0) beams [J]. AIAA Journal, 2000, 38(1: 131–138).

    Article  Google Scholar 

  30. Low Y. M., Langley R. S. Dynamic analysis of a flexible hanging riser in the time and frequency domain [C]. 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 2006, 161–170.

    Google Scholar 

  31. Hall M., Goupee A. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data [J]. Ocean Engineering, 2015, 104: 590–603).

    Article  Google Scholar 

  32. Quallen S., Xing T., Carrica P. et al. CFD Simulation of a floating offshore wind turbine system using a quasi-static crowfoot mooring-line model [J]. Journal of Ocean and Wind Energy, 2014, 1(3: 143–152).

    Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge Mr Christophe Peyrard from Électricité de France (EDF) for generously providing insightful suggestions and comments to this work and for kindly offering access to the Athos HPC facility in EDF. This work was supported by the National Natural Science Foundation of China (Grant No. U1806229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xiao.

Additional information

Biography: Yuanchuan Liu (1990-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xiao, Q. Development of a fully coupled aero-hydro-mooring-elastic tool for floating offshore wind turbines. J Hydrodyn 31, 21–33 (2019). https://doi.org/10.1007/s42241-019-0012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0012-6

Key words

Navigation