Numerical simulation of bubble detachment at submerged orifice and analysis of interface stability


This paper presents the experimental and numerical results of the bubble detachment from a submerged orifice at a constant gas flow rate. The compressible large eddy simulation combined with the volume of fluid method is adopted in the simulation and is validated by experiment. The transition criterion from the elongation stage to the detachment is obtained. In the detaching stage in the simulation, the distributions of the pressure and the surface tension on the cylindrical bubble neck are obtained. The Rayleigh-Plesset equation in the cylindrical coordinate frame is used to describe this process. Based on the comparison between the numerical results and the equation analysis, a reference value of the uncertain integral parameter in the equation is determined.

This is a preview of subscription content, log in to check access.


  1. [1]

    Zhang L., Shoji M. Aperiodic bubble formation from a submerged orifice [J]. Chemical Engineering Science, 56(18): 5371–5381.

  2. [2]

    Legendre D., Zenit R., Velez-Cordero J. R. On the deformation of gas bubbles in liquids [J]. Physics of Fluids, 2012, 24: 043303.

    Article  Google Scholar 

  3. [3]

    Legendre D. On the relation between the drag and the vorticity produced on a clean bubble [J]. Physics of Fluids, 2007, 19: 018102.

    Article  Google Scholar 

  4. [4]

    Gerlach D., Biswas G., Durst F. et al. Quasi-static bubble formation on submerged orifices [J]. International Journal of Heat and Mass Transfer, 2005, 48(2): 425–438.

    Article  Google Scholar 

  5. [5]

    Buwa V. V., Gerlach D., Durst F. et al. Numerical simulations of bubble formation on submerged orifices: Period-1 and period-2 bubbling regimes [J]. Chemical Engineering Science, 2007, 62(24): 7119–7132.

    Article  Google Scholar 

  6. [6]

    Gerlach D., Alleborn N., Buwa V. et al. Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate [J]. Chemical Engineering Science, 2007, 62(7): 2109–2125.

    Article  Google Scholar 

  7. [7]

    Kulkarni A. A., Joshi J. B. Bubble formation and bubble rise velocity in gas-liquid systems: A review [J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873–5931.

    Article  Google Scholar 

  8. [8]

    Jamialahmadi M., Zehtaban M., Müller-Steinhagen H. et al. Study of bubble formation under constant flow conditions [J]. Chemical Engineering Research & Design, 2001, 79: 523–532.

    Article  Google Scholar 

  9. [9]

    Di Bari S., Robinson A. J. Experimental study of gas injected bubble growth from submerged orifices [J]. Experimental Thermal and Fluid Science, 2013, 44(1): 124–137.

    Article  Google Scholar 

  10. [10]

    Hysing S., Turek S., Kuzmin D. et al. Quantitative benchmark computations of two-dimensional bubble dynamics [J]. International Journal for Numerical Methods in Engineering, 2009, 60(11): 1259–1288.

    MathSciNet  Article  Google Scholar 

  11. [11]

    Zhu X., Xie J., Liao Q. et al. Dynamic bubbling behaviors on a micro-orifice submerged in stagnant liquid [J]. International Journal of Heat and Mass Transfer, 2014, 68: 324–331.

    Article  Google Scholar 

  12. [12]

    Xie J., Zhu X., Liao Q. et al. Dynamics of bubble formation and detachment from an immersed micro-orifice on a plate [J]. International Journal of Heat and Mass Transfer, 2012, 55(11-12): 3205–3213.

    Article  Google Scholar 

  13. [13]

    Martín M., García J. M., Montes F. J. et al. On the effect of the orifice configuration on the coalescence of growing bubbles [J]. Chemical Engineering and Processing, 2008, 47(9): 1799–1809.

    Article  Google Scholar 

  14. [14]

    Zhang J., Yu Y., Qu C. et al. Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate [J]. Chemical Engineering Science, 2017, 168: 1–10.

    Article  Google Scholar 

  15. [15]

    Vokurka K. Significant intervals of energy transforms in bubbles freely oscillating in liquids [J]. Journal of Hydrodynamics, 2017, 29(2): 217–225.

    Article  Google Scholar 

  16. [16]

    Sarhan A. R., Naser J., Brooks G. CFD modeling of bubble column: Influence of physico-chemical properties of the gas/liquid phases properties on bubble formation [J]. Separation and Purification Technology, 2018, 201: 130–138.

    Article  Google Scholar 

  17. [17]

    Burton J., Waldrep R., Taborek P. Scaling and instabilities in bubble pinch-off [J]. Physical Review Letters, 2005, 94: 184502.

    Article  Google Scholar 

  18. [18]

    Gordillo J., Sevilla A., Rodriguez-Rodriguez J. et al. Axisymmetric bubble pinch-off at high Reynolds numbers [J]. Physical Review Letters, 2005, 95: 194501.

    Article  Google Scholar 

  19. [19]

    Leppinen D., Lister J. R. Capillary pinch-off in inviscid fluids [J]. Physics of Fluids, 2003, 15: 568.

    MathSciNet  Article  Google Scholar 

  20. [20]

    Thoroddsen S., Etoh T., Takehara K. Experiments on bubble pinch-off [J]. Physics of Fluids, 2007, 19: 042101.

    Article  Google Scholar 

  21. [21]

    Gordillo J. Axisymmetric bubble collapse in a quiescent liquid pool. I. Theory and numerical simulations [J]. Physics of Fluids, 2008, 20: 112103.

    Article  Google Scholar 

  22. [22]

    Bolaños-Jiménez R., Sevilla A., Martinez-Bazan C. et al. Axisymmetric bubble collapse in a quiescent liquid pool. II. Experimental study [J]. Physics of Fluids, 2008, 20: 112104.

    Article  Google Scholar 

  23. [23]

    Quan S., Hua J. Numerical studies of bubble necking in viscous liquids [J]. Physical Review E, 2008, 066303.

    Google Scholar 

  24. [24]

    Garnier E., Adams N., Sagaut P. Large eddy simulation for compressible flows [M]. Springer Science & Business Media, 2009.

    Google Scholar 

  25. [25]

    Lin W. Large-eddy simulation of premixed turbulent combustion using flame surface density approach [D]. School of Graduate Studies - Theses, 2011.

    Google Scholar 

  26. [26]

    Chen C., Fan L. S. Discrete simulation of gas-liquid bubble columns and gas-liquid-solid fluidized beds [J]. AIChE Journal, 2004, 50(2): 288–301.

    Article  Google Scholar 

  27. [27]

    Albadawi A., Donoghue D., Robinson A. et al. On the analysis of bubble growth and detachment at low capillary and bond numbers using volume of fluid and level set methods [J]. Chemical Engineering Science, 2013, 90(Complete): 77–91.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yi-wei Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 11772340, 11672315, the Youth Innovation Promotion Association CAS(Grant No. 2015015).

Biography: Xian-xian Yu (1987-), Female, Ph. D.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, Y., Huang, C. et al. Numerical simulation of bubble detachment at submerged orifice and analysis of interface stability. J Hydrodyn 31, 293–302 (2019).

Download citation

Key words

  • Bubble interfacial dynamics
  • large eddy simulation
  • instability criterion
  • Rayleigh-Plesset equation