Skip to main content

Advertisement

Log in

Multi-objective optimization of the kinematic parameters of fish-like swimming using a genetic algorithm method

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper investigates the kinematic optimization of fish-like swimming. First, an experiment was performed to detect the motion of the fish tail foil of a fish robot. Next, the kinematic swimming model was verified experimentally using an image processing method. The model includes two rotational motions: caudal foil motion and foil-pitching motion. The kinematic model allows us to evaluate the influence of motion trajectory in the optimization process. To optimize the propulsive efficiency and thrust, a multi-objective genetic algorithm was employed to handle with kinematic, hydrodynamic, and propulsion models. The results show that the caudal length has a significant effect on the performance of the flapping foil in fish-like swimming, and its influence on the motion trajectory may increase the propulsive efficiency to as high as 98% in ideal conditions. The maximum thrust coefficient can also reach approximately 3 in ideal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauder G. V., Anderson E. J., Tangorra J. et al. Fish biorobotics: kinematics and hydrodynamics of self-propulsion [J]. Journal of Experimental Biology, 2007, 210(16): 2767–80.

    Article  Google Scholar 

  2. Roche D. G., Taylor M. K., Binning S. A. et al. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata) [J]. Journal of Experimental Biology, 2014, 217(3): 414–22.

    Article  Google Scholar 

  3. Fish F. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance [J]. Journal of Experimental Biology, 1998, 201(20): 2867–77.

    Google Scholar 

  4. Taylor G. K., Nudds R. L., Thomas A. L. R. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency [J]. Nature. 2003, 425(6959): 707–11.

    Article  Google Scholar 

  5. Triantafyllou M. S., Triantafyllou G. S., Yue D. K. P. Hydrodynamics of fishlike swimming. annual [J]. Review of Fluid Mechanics, 2000, 32(1): 33–53.

    Article  MathSciNet  Google Scholar 

  6. Godoy-Diana R., Aider J. L., Wesfreid J. E. Transitions in the wake of a flapping foil [J]. Physical Review E, 2008, 77(1): 016308.

    Article  Google Scholar 

  7. Politis G. K., Tsarsitalidis V. Simulating biomimetic (flapping foil) flows for comprehension, reverse engineering and design [C]. First International Symposium on Marine Propulsors, Trondheim, Norway, 2009.

    Google Scholar 

  8. Pedro G., Suleman A., Djilali N. A numerical study of the propulsive efficiency of a flapping hydrofoil [J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 493–526.

    Article  MathSciNet  Google Scholar 

  9. Fish F. E. Structure and mechanics of nonpiscine control surfaces [J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 605–21.

    Article  Google Scholar 

  10. Lauder G. V., Drucker E. G. Morphology and experimental hydrodynamics of fish fin control surfaces [J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 556–71.

    Article  Google Scholar 

  11. Wu T. Y. T. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid [J]. Journal of Fluid Mechanics, 1971, 46: 337–55.

    Article  Google Scholar 

  12. Wu T. Y. T. Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins [J]. Journal of Fluid Mechanics, 1971, 46: 545–68.

    Article  Google Scholar 

  13. Wu T. Y. T. Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems [J]. Journal of Fluid Mechanics, 1971, 46: 521–44.

    Article  Google Scholar 

  14. Karpouzian G., Spedding G., Cheng H. K. Lunate-tail swimming propulsion. Part 2. Performance analysis [J]. Journal of Fluid Mechanics, 1990, 210: 329–51.

    Article  Google Scholar 

  15. Karbasian H. R., Esfahani J. A., Barati E. Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation [J]. Renewable Energy, 2015, 81: 816–24.

    Article  Google Scholar 

  16. Karbasian H. R., Esfahani J. A., Barati E. The power extraction by flapping foil hydrokinetic turbine in swing arm mode [J]. Renewable Energy, 2016, 88: 130–42.

    Article  Google Scholar 

  17. Karbasian H. R., Kim K. C. Numerical investigations on flow structure and behavior of vortices in the dynamic stall of an oscillating pitching hydrofoil [J]. Ocean Engineering, 2016, 127: 200–11.

    Article  Google Scholar 

  18. Esfahani J. A., Barati E., Karbasian H. R. Fluid structures of flapping airfoil with elliptical motion trajectory [J]. Computers & Fluids, 2015, 108: 142–55.

    Article  MathSciNet  Google Scholar 

  19. Esfahani J. A., Barati E., Karbasian H. R. Comparative investigations in the effect of angle of attack profile on hydrodynamic performance of bio-inspired foil, (corrected) [J]. 2013, 10(2): 10.

    Google Scholar 

  20. Liu P., Bose N. Propulsive performance of three naturally occurring oscillating propeller planforms [J]. Ocean Engineering, 1993, 20(1): 57–75.

    Article  Google Scholar 

  21. Kim S., Huang W. X., Sung H. J. Constructive and destructive interaction modes between two tandem flexible flags in viscous flow [J]. Journal of Fluid Mechanics, 2010, 661: 511–21.

    Article  Google Scholar 

  22. Uddin E., Huang W. X., Sung H. J. Actively flapping tandem flexible flags in a viscous flow [J]. Journal of Fluid Mechanics, 2015, 780: 120–42.

    Article  MathSciNet  Google Scholar 

  23. Uddin E., Huang W. X., Sung H. J. Interaction modes of multiple flexible flags in a uniform flow [J]. Journal of Fluid Mechanics, 2013, 729: 563–83.

    Article  MathSciNet  Google Scholar 

  24. Anderson J. M., Streitlien K., Barrett D. S. et al. Oscillating foils of high propulsive efficiency [J]. Journal of Fluid Mechanics, 1998, 360: 41–72.

    Article  MathSciNet  Google Scholar 

  25. Tuncer I. H., Walz R., Platzer M. F. A computational study on the dynamic stall of a flapping airfoil [C]. 16th Applied Aerodynamics Conference, Albuquerque, New Mexico, USA 1998.

    Google Scholar 

  26. Isogai K., Shinmoto Y., Watanabe Y. Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil [J]. AIAA Journal, 1999, 37(10): 1145–51.

    Article  Google Scholar 

  27. Tuncer I. H., Platzer M. F. Computational study of flapping airfoil aerodynamics [J]. Journal of Aircraft, 2000, 37(3): 514–20.

    Article  Google Scholar 

  28. Read D. A., Hover F. S. Triantafyllou MS. Forces on oscillating foils for propulsion and maneuvering [J]. Journal of Fluids and Structures, 2003, 17(1): 163–83.

    Article  Google Scholar 

  29. Esfahani J. A., Barati E., Karbasian H. R. Effect of caudal on hydrodynamic performance of flapping foil in fish-like swimming [J]. Applied Ocean Research, 2013, 42: 32–42.

    Article  Google Scholar 

  30. Esfahani J. A., Karbasian H. R., Barati E. Proposed kinematic model for fish-like swimming with two pitch motions [J]. Ocean Engineering, 2015, 104: 319–28.

    Article  Google Scholar 

  31. Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter [R]. 1935.

    MATH  Google Scholar 

  32. Delaurier J. D. An aerodynamic model for flapping wing flight [J]. Aeronautical Journal, 1993, 97(964): 125–30.

    Google Scholar 

  33. Ol M. V., Bernal L., Kang C. K. et al. Shallow and deep dynamic stall for flapping low Reynolds number airfoils [J]. Experiments in Fluids, 2009, 46(5): 883–901.

    Article  Google Scholar 

  34. Abramowitz M. Handbook of Mathematical Functions [M]. 1964.

    MATH  Google Scholar 

  35. Zhou Y., Alam M. M., Yang H. X. et al. Fluid forces on a very low Reynolds number airfoil and their prediction [J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 329–39.

    Article  Google Scholar 

  36. Hoerner S. F. Fluid dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance [M]. Second Edition, 1965.

    Google Scholar 

  37. Lian Y., Shyy W. Aerodynamics of low Reynolds number plunging airfoil under gusty environment [C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2007.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the International Research and Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (NRF-2017K1A3A1A30084513) and partial support was also obtained from the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Nos. 2011-0030013, 2018R1A2B2007117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Chung Kim.

Additional information

Biography: Mahdi Abolfazli Esfahani (1993-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, M.A., Karbasian, H.R. & Kim, K.C. Multi-objective optimization of the kinematic parameters of fish-like swimming using a genetic algorithm method. J Hydrodyn 31, 333–344 (2019). https://doi.org/10.1007/s42241-018-0160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0160-0

Key words

Navigation