Advertisement

Journal of Hydrodynamics

, Volume 30, Issue 1, pp 62–69 | Cite as

SPH modeling of fluid-structure interaction

  • Luhui Han
  • Xiangyu Hu
Special Column on SPHERIC2017 (Guest Editors Mou-bin Liu, Can Huang, A-man Zhang)
  • 115 Downloads

Abstract

This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.

Keywords

Fluid-structure interaction (FSI) smoothed particle hydrodynamics (SPH) total Lagrangian formulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (Grant No. DFG HU1527/6-1) for the present work.

References

  1. [1]
    Bungartz H. J., Schäfer M. Fluid-structure interaction. Modelling, simulation, optimisation [M]. Berlin, Heidelberg, Germany: Springer Science and Business Media, 2006.MATHGoogle Scholar
  2. [2]
    Sigrist J. F. Fluid-structure interaction: An introduction to finite element coupling [J]. Comptuters and Mathematics with Applications, 2015, 69(10): 1167–1188.CrossRefGoogle Scholar
  3. [3]
    Tezduyar T. E., Sathe S., Keedy R. Space–time finite element techniques for computation of fluid–structure interactions [J]. Computer methods in Applied Mechanics and Engineering, 2006,195(17): 2002–2027.Google Scholar
  4. [4]
    Ahn H. T., Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes [J]. Journal of Computational Physics, 2006, 219(2): 671–696.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Tian F. B., Dai H., Luo H. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems [J]. Journal of computational physics, 2014, 258(2): 451–469.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Wu K., Yang D., Wright N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure [J]. Computers and Structures, 2016, 177: 141–161.CrossRefGoogle Scholar
  7. [7]
    Han K., Feng Y.T., Owen D.R. J. Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM [J]. Computer Modeling in Engineering and Sciences, 2007, 18(2):87–100.MathSciNetMATHGoogle Scholar
  8. [8]
    Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle method [M]. Singopare: World Scientific, 2003.CrossRefMATHGoogle Scholar
  9. [9]
    Lucy L. B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82: 1013–1024.CrossRefGoogle Scholar
  10. [10]
    Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389.CrossRefMATHGoogle Scholar
  11. [11]
    Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid–structure interaction by SPH [J]. Computers and Structures, 2007, 85(11-14): 879–890.CrossRefGoogle Scholar
  12. [12]
    Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6641–6662.CrossRefMATHGoogle Scholar
  13. [13]
    Zhang C., Hu Y., Adams N. A. A generalized transportvelocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2017, 337: 216–232.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Libersky L. D., Petschek A. G., Carney T. C. et al. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response [J]. Journal of computational physics, 1993, 109(1): 67–75.CrossRefMATHGoogle Scholar
  15. [15]
    Vignjevic R., Reveles J. R., Campbell J. SPH in a total Lagrangian formalism [J]. Computer Modeling in Engineering and Sciences, 2006, 14(3): 181–198.MathSciNetMATHGoogle Scholar
  16. [16]
    Monaghan J. J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290–311.CrossRefMATHGoogle Scholar
  17. [17]
    Adami S., Hu X. Y., Adams N. A. A transport-velocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2013, 241(5): 292–307.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Monaghan J. J. Simulating free surface flows with SPH [J]. Journal of computational physics, 1994, 110(2): 399–406.CrossRefMATHGoogle Scholar
  19. [19]
    Hu X. Y., Adams N. A. A multi-phase SPH method for macroscopic and mesoscopic flows [J]. Journal of Computational Physics, 2006, 213(2): 844–861.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Turek S., Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow (Bungartz H. J., Schäfer M. Fluid-structure interaction: Modeling, simulation, optimisation) [M]. Berlin, Heidelberg, Germany: Springer, 2006, 371–385.MATHGoogle Scholar
  21. [21]
    Adami S., Hu X. Y., Adams N. A. A generalized wall boundary condition for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2012, 231(21): 7057–7075.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Bonet J., Kulasegaram S. A simplified approach to enhance the performance of smooth particle hydrodynamics methods [J]. Applied Mathematics and Computation, 2002, 126(2): 133–155.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Bhardwaj R., Mittal R. Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flowinduced deformation [J]. AIAA Journal, 2012, 50(7): 1638–1642.CrossRefGoogle Scholar
  24. [24]
    Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Advances in computational Mathematics, 1995, 4(1): 389–396.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Gaster M. Vortex shedding from circular cylinders at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1971, 46: 749–756.CrossRefGoogle Scholar
  26. [26]
    Roshko A. On the development of turbulent wakes from vortex streets[R]. Technical Report Archive and Image Library, 1954.Google Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnical University of MunichGarchingGermany

Personalised recommendations