Skip to main content
Log in

Biomimetic Janus Paper with Controllable Swelling for Shape Memory and Energy Conversion

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Being inspired by the “seismonastic reaction” of Mimosa pudica, an asymmetric swelling system was constructed to induce the controllable directional deformation of filter paper. In this work, multifunctional biomimetic Janus paper was facilely fabricated via depositing poly(vinylidene fluoride) (PVDF) on one side of Qualitative Filter Paper (QFP), the permeation of polymer solutions within filter paper was well controlled during fabrication. The wetting and swelling behavior of the prepared Janus paper were detected. The Janus paper showed controllable swelling-induced deformations in water. Both the degree and orientation of the deformation were fully investigated. On the one hand, the degree of deformation depends on the gradient wettability and hygroscopicity of the Janus paper, on the other hand, the orientation of deformation is related to the storage and release of stress. Additionally, the steady deformation during swelling endows the Janus paper with novel shape memory property both under idling and loading conditions. The Janus paper was also applied to achieve reversible energy conversion from the swelling potential energy to mechanical potential energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang H C, Hou J, Chen V, Xu Z K. Janus membranes: Exploring duality for advanced separation. Angewandte Chemie International Edition, 2016, 55, 13398–13407.

    Article  Google Scholar 

  2. Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997, 79, 667–677.

    Article  Google Scholar 

  3. Cheng Q F, Li M Z, Zheng Y M, Su B, Wang S T, Jiang L. Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 2011, 7, 5948–5951.

    Article  Google Scholar 

  4. Zhao Y Y, Yu C M, Lan H, Cao M Y, Jiang L. Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf. Advanced Functional Materials, 2017, 27, 1701466.

    Article  Google Scholar 

  5. Yamaoka K, Saharinen P, Pesu M, Holt V, Silvennoinen O, O’Shea J. The Janus kinases (Jaks). Genome Biology, 2004, 5, 253.

    Article  Google Scholar 

  6. Royer Y, Staerk J, Costuleanu M, Courtoy P J, Constantinescu S N. Janus kinases affect thrombopoietin receptor cell surface localization and stability. Journal of Biological Chemistry, 2015, 280, 27251–27261.

    Article  Google Scholar 

  7. Walther A, Müller A. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113, 5194.5261.

    Article  Google Scholar 

  8. Fujii S, Yokoyama Y, Nakayama S, Ito M, Yusa S, Nakamura Y. Gas bubbles stabilized by Janus particles with varying hydrophilic-hydrophobic surface characteristics. Langmuir, 2018, 34, 933–942.

    Article  Google Scholar 

  9. Wong W, Li M, Nisbet D R, Craig V, Wang Z, Tricoli A. Mimosa origami: A nanostructure-enabled directional self-organization regime of materials. Science Advances, 2016, 2, e1600417.

  10. Sasaki K, Tenjimbayashi M, Manabe K, Shiratori S. Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 651.659.

    Article  Google Scholar 

  11. Yan X, Li J, Yi L. Fabrication of pH-responsive hydrophilic/hydrophobic Janus cotton fabric via plasma-induced graft polymerization. Materials Letters, 2017, 208, 46.49.

    Article  Google Scholar 

  12. Si Y F, Chen L W, Yang F C, Guo F, Guo Z G. Stable Janus superhydrophilic/hydrophobic nickel foam for directional water transport. Journal of Colloid and Interface Science, 2018, 509, 346–352.

    Article  Google Scholar 

  13. Wang Z, Liu G, Huang S. In situ generated Janus fabrics for the rapid and efficient separation of oil from oil-in-water emulsions. Angewandte Chemie International Edition, 2016, 128, 14830–14833.

    Article  Google Scholar 

  14. Wang Z, Wang Y, Liu G. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie International Edition, 2016, 55, 1291–1294.

    Article  Google Scholar 

  15. Zhao Y, Wang H, Zhou H, Lin T. Directional fluid transport in thin porous materials and its functional applications. Small, 2017, 13, 160107.

    Google Scholar 

  16. Tian X L, Jin H, Sainio J, Ras R, Ikkala O. Droplet and fluid gating by biomimetic Janus membranes. Advanced Func tional Materials, 2014, 24, 6023–6028.

    Article  Google Scholar 

  17. Ibañez D, Valles E, Gomez E, Colina A, Heras A. Janus electrochemistry: Asymmetric functionalization in one step. ACS Applied Materials & Interfaces, 2017, 9, 35404.35410.

    Article  Google Scholar 

  18. Wu M, Yang H, Wang J, Wu G, Xu Z. Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification. ACS Applied Materials & Interfaces, 2017, 9, 5062.5066.

    Article  Google Scholar 

  19. Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015, 6, 105.121.

    Article  Google Scholar 

  20. Ullah F, Othman M B H, Javed F, Ahmad Z, Akil H M. Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 2015, 57, 414.433.

    Article  Google Scholar 

  21. Singamaneni S, McConney M, Tsukruk V. Swelling-induced folding in confined nanoscale responsive polymer gels. ACS Nano, 2010, 4, 2327.2337.

    Article  Google Scholar 

  22. Lim H, Lee J, Walish J, Thomas E. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano, 2012, 6, 8933.8939.

    Article  Google Scholar 

  23. Currie J A. Gas diffusion through soil crumbs: The effects of wetting and swelling. Journal of Soil Science, 1983, 34, 217.232.

    Article  Google Scholar 

  24. Grant C D, Dexter A R. Air entrapment and differential swelling as factors in the mellowing of moulded soil during rapid wetting. Australian Journal of Soil Research, 1990, 28, 361.369.

    Article  Google Scholar 

  25. Wang Y, Tong L, Steinhart M. Swelling-induced morphology reconstruction in block copolymer nanorods: Kinetics and impact of surface tension during solvent evaporation. ACS Nano, 2011, 5, 1928.1938.

    Article  Google Scholar 

  26. Wei C, Plucinski A, Nuasaen S, Tripathi A, Tangboriboonrat P, Tauer K. Swelling-induced deformation of spherical latex particles. Macromolecules, 2017, 50, 349.363.

    Article  Google Scholar 

  27. Volkov A G, Foster J C, Markin V S. Signal transduction in Mimosa pudica: Biologically closed electrical circuits. Plant Cell & Environment, 2010, 33, 816–827.

    Article  Google Scholar 

  28. Allen R. Mechanism of the seismonastic reaction in Mimosa pudica. Plant Physiology, 1969, 44, 1101–1107.

    Article  Google Scholar 

  29. Wang Z J, Zhu C N, Hong W, Wu Z L, Zheng Q. Cooperative deformations of periodically patterned hydrogels. Science Advances, 2017, 3, e1700348.

  30. Xue B, Kozlovskaya V, Kharlampieva E. Shaped stimuli-responsive hydrogel particles: Syntheses, properties and biological responses. Journal of Materials Chemistry B, 2017, 5, 9–35.

    Article  Google Scholar 

  31. Wang J, Wang J, Chen Z, Fang S, Zhu Y, Baughman R H, Jiang L. Tunable, fast, robust hydrogel actuators based on evaporation-programmed heterogeneous structures. Chemistry of Materials, 2017, 29, 9793.9801.

    Article  Google Scholar 

  32. Bligh E, Dyer W. A rapid method of total lipid extraction and purification. Canadian Journal Biochemistry Physiology, 1959, 37, 911.917.

    Article  Google Scholar 

  33. Du C, Wang J, Chen Z, Chen D. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Applied Surface Science, 2014, 313, 304–310.

    Article  Google Scholar 

  34. Chen L W, Si Y F, Zhu H, Jiang T, Guo Z G. A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. Journal of Membrane Science, 2016, 520, 760–768.

    Article  Google Scholar 

  35. Ju J, Wang T, Wang Q. A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water–oil separation. Journal of Applied Polymer Science, 2015, 132, 42077.

    Google Scholar 

  36. Wenzel R N. Resistance of solid surface to wetting by water. Journal of Industrial and Engineering Chemistry, 1936, 28, 988–994.

    Article  Google Scholar 

  37. Budtova T, Navard P. Swelling kinetics of a polyelectrolyte gel in water and salt solutions. Coexistence of swollen and collapsed phases. Macromolecules, 1998, 31, 8845–8850.

    Google Scholar 

  38. Velankar S S, Lai V. Swelling-induced delamination causes folding of surface-tethered polymer gels. ACS Applied Materials & Interfaces, 2012, 4, 24.29.

    Article  Google Scholar 

  39. Tanaka T, Fillmore D J. Kinetics of swelling of gels. Journal of Chemical Physics, 1979, 70, 1214.

    Article  Google Scholar 

  40. Zaleski R, Krasucka P, Skrzypiec K, Goworek J. Macro-and nanoscopic studies of porous polymer swelling. Macromolecules, 2017, 50, 5080.5089.

    Article  Google Scholar 

  41. Tekes A T, Sınag A, Mısırlıoglu Z, Canel M. Determination of swelling properties of Soma-Isıklar Lignite (Turkey). Energy and Fuels, 2002, 16, 1309–1313.

    Article  Google Scholar 

  42. Park B, Lee D. Equilibrium orientation of nonsphericalbJanus particles at fluid-fluid interfaces. ACS Nano, 2012, 6, 782–790.

    Article  Google Scholar 

  43. Liu X, Zheng H, Zhong L, Huang S, Karki K, Zhang L, Liu Y, Kushima A, Liang W, Wang J, Cho J, Epstein E, Dayeh S, Picraux S, Zhu T, Li J, Sullivan J, Cumings J, Wang C, Mao S, Ye Z, Zhang S, Huang J. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Letter, 2012, 11, 3312–3318.

    Article  Google Scholar 

  44. Guney Y, Sari D, Cetin M, Tuncan M. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil. Building and Environment, 2007, 42, 681–688.

    Article  Google Scholar 

  45. Oppermann W. Swelling behavior and elastic properties of ionic hydrogels. ACS Symposium Series, 1992, 480, 159–170.

    Article  Google Scholar 

  46. Mott P H, Roland C M. Elasticity of natural rubber networks. Macromolecules, 1996, 29, 6941–6945.

    Article  Google Scholar 

  47. Fang Z Q, Kuang Y D, Zhou P P, Ming S Y, Zhu P H, Liu Y, Ning H L, Chen G. Programmable shape recovery process of water-responsive shape-memory poly(vinyl alcohol) by wettability contrast strategy. ACS Applied Materials & Interfaces, 2017, 9, 5495.5502.

    Article  Google Scholar 

  48. Brostowitz N, Weiss R, Cavicchi K A. Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Letters, 2014, 3, 374.377.

    Article  Google Scholar 

  49. Espinha A, Guidetti G, Serrano M, Frka-Petesic B, Dumanli A, Hamad W, Blanco Á, López C, Vignolini S. Shape memory cellulose-based photonic reflectors. ACS Applied Materials & Interfaces, 2016, 8, 31935.31940.

    Article  Google Scholar 

  50. Flory P J. Statistical mechanics of swelling of network structures. Journal of Chemical Physics, 1950, 18, 108.

    Article  Google Scholar 

  51. Haldrup S, Catalano J, Hinge M, Jensen G, Pedersen J, Bentien A. Tailoring membrane nanostructure and charge density for high electrokinetic energy conversion efficiency. ACS Nano, 2016, 10, 2415.2423.

    Article  Google Scholar 

  52. Erbas A, Cruz M. Energy conversion in polyelectrolyte hydrogels. ACS Macro Letters, 2015, 4, 857.861.

    Article  Google Scholar 

  53. Pashkin E Y, Pankov A M, Kulnitskiy B A, Perezhogin I A, Karaeva A R, Mordkovich V Z, Popov M Y, Sorokin P B, Blank V O. The unexpected stability of multiwall nanotubes under high pressure and shear deformation. Applied Physical Letters, 2016, 109, 081904.

    Article  Google Scholar 

  54. Ha H O, Kim D S, Color change of an iodinated poly(vinyl alcohol) film by physical deformation. Journal of Applied Polymer Science, 2016, 133, 43036.

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Nature Science Foundation of China (Nos. 51522510, 51675513 and 51735013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Guo, Z. Biomimetic Janus Paper with Controllable Swelling for Shape Memory and Energy Conversion. J Bionic Eng 16, 1–12 (2019). https://doi.org/10.1007/s42235-019-0001-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0001-z

Keywords

Navigation