Journal of Bionic Engineering

, Volume 15, Issue 3, pp 558–566 | Cite as

Production and Characterization of High Density Polyethylene Reinforced by Eucalyptus Capsule Fibers

  • Wafa Ouarhim
  • Mohammed-Ouadi Bensalah
  • Denis Rodrigue
  • Hamid Essabir
  • Rachid Bouhfid
  • Abou el kacem Qaiss
Article
  • 3 Downloads

Abstract

In this work, Eucalyptus Capsule Fibers (ECF) are proposed as a new natural fiber reinforcement to produce bio-composites due to their biological origin, specific smell and color. High Density Polyethylene (HDPE) is used as the matrix to compare three reinforcement types, raw ECF, alkali treated ECF, and ECF treated with PE-graft-maleic anhydride (PE-g-MA) as a coupling agent at three concentrations (5 wt.%, 10 wt%, and 15 wt%). A complete set of characterization is performed including tension, torsion, hardness, Melt Flow Index (MFI), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Contact Angle (CA), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). The results show that the best mechanical and rheological improvements are obtained by using the coupling agent with alkali treated fibers.

Keywords

eucalyptus capsule fibers polyethylene alkaline treatment coupling agent mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by MAScIR; Moroccan Foundation for Advanced Science, Innovation and Research, MESRSFC and CNRST, Morocco Grant no. 1970/15. The authors would like to thank Mr. Mehdi Ait Dahi for his fruitful technical support and assistance.

References

  1. [1]
    Li W, Meng L, Ma R. Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polymer Testing, 2016, 55, 10–16.CrossRefGoogle Scholar
  2. [2]
    Petchwattana N, Covavisaruch S. Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 2013, 10, 110–117.CrossRefGoogle Scholar
  3. [3]
    Yusoff R B, Takagi H, Nakagaito A N. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops Product, 2016, 94, 562–573.CrossRefGoogle Scholar
  4. [4]
    Petchwattana N, Covavisaruch S. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 2014, 11, 630–637.CrossRefGoogle Scholar
  5. [5]
    AL-Oqla F M, Sapuan S M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Product, 2014, 66, 347–354.CrossRefGoogle Scholar
  6. [6]
    Bravo A, Toubal L, Koffi D, Erchiqui F. Development of novel green and biocomposite materials: Tensile and flexural properties and damage analysis using acoustic emission. Materials & Design, 2015, 66, 16–28.CrossRefGoogle Scholar
  7. [7]
    Mejri M, Toubal L, Cuillière J C, Francois V. Fatigue life and residual strength of a short-natural fiber-reinforced plastic vs Nylon. Composites Part B, 2017, 110, 429–441.CrossRefGoogle Scholar
  8. [8]
    Binoj J S, Edwin R, Sreenivasan V S, Thusnavis G R. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering, 2016, 13, 156–165.CrossRefGoogle Scholar
  9. [9]
    Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur V K. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. International Journal of Biological Macromolecules, 2015, 79, 449–458.CrossRefGoogle Scholar
  10. [10]
    Asim M, Jawaid M, Abdan K, Ishak M R. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 2016, 13, 426–435.CrossRefGoogle Scholar
  11. [11]
    Haque M, Rahman R, Islam N, Huque M, Hasan M. Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. Journal of Reinforced Plastics and Composites, 2010, 29, 2253–2261.CrossRefGoogle Scholar
  12. [12]
    Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrates Polymer, 2014, 104, 223–230.CrossRefGoogle Scholar
  13. [13]
    Zannen S, Ghali L, Halimi M T, Ben Hssen M. Effect of chemical extraction on physicochemical and mechanical properties of doum palm fibres. Advanced Material Physiques and Chemistry, 2014, 4, 203–216.CrossRefGoogle Scholar
  14. [14]
    Mechakra H, Nour A, Lecheb S, Chellil A. Mechanical characterizations of composite material with short Alfa fibers reinforcement. Composites Structure, 2015, 124, 152–162.CrossRefGoogle Scholar
  15. [15]
    Qidwai M, Sheraz M A, Ahmed S, Alkhuraif A A, ur Rehman I. Preparation and characterization of bioactive composites and fibers for dental applications. Dental Materials, 2014, 30, 253–263.CrossRefGoogle Scholar
  16. [16]
    Lv J, Jiang Y, Zhang D. Structural and mechanical characterization of Atrina Pectinata and freshwater mussel shells. Journal of Bionic Engineering, 2015, 12, 276–284.CrossRefGoogle Scholar
  17. [17]
    Essabir H, Nekhlaoui S, Bensalah, M O, Rodrigue D, Bouhfid R, Qaiss A. Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: Structural, mechanical and thermal properties. Journal of Polymer Environment, 2017, 25, 658–666.CrossRefGoogle Scholar
  18. [18]
    Qaiss A E K, Bouhfid R, Essabir H. Biomass and Bioenergy: Processing and Properties. Springer International Publishing, Switzerland, 2014, 225–244.Google Scholar
  19. [19]
    Qaiss A E K, Bouhfid R, Essabir H. Agricultural Biomass Based Potential Materials. Springer International Publishing, Switzerland, 2015, 305–339.Google Scholar
  20. [20]
    Hakeem K R, Jawaid M, Alothman O. Biocomposites based on argan nut shell and a polymer matrix: Effect of filler content and coupling agent. Carbohydrate Polymer, 2016, 143, 70–83.CrossRefGoogle Scholar
  21. [21]
    Essabir H, Achaby M E, Hilali E M, Bouhfid R, Qaiss A E. Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. Journal of Bionic Engineering, 2015, 12, 129–141.CrossRefGoogle Scholar
  22. [22]
    Salit M S, Jawaid M, Yusoff N B, Hoque M W. Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer International Publishing, Switzerland, 2015, 177–197.CrossRefGoogle Scholar
  23. [23]
    Nekhlaoui S, Essabir H, Kunal D, Sonakshi M, Bensalah MO, Bouhfid R, Qaiss A. Comparative study for the talc and two kinds of Moroccan clay as reinforcements in polypropylene-SEBS-g-MA matrix. Polymer Composites, 2016, 36, 675–684.CrossRefGoogle Scholar
  24. [24]
    Jawaid M, Qaiss A K, Bouhfid R. Nanoclay Reinforced Polymer Composites: Natural Fiber/nanoclay Hybrid Composites. Springer International Publishing, Switzerland, 2016, 29–48.CrossRefGoogle Scholar
  25. [25]
    El Mechtali F Z, Essabir H, Nekhlaoui S, Bensalah M O, Jawaid M, Bouhfid R, Qaiss A E. Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 2015, 12, 83–94.CrossRefGoogle Scholar
  26. [26]
    Essabir H, Bensalah M O, Rodrigue D, Bouhfid R, Qaiss A. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 2016, 93, 134–144.CrossRefGoogle Scholar
  27. [27]
    Essabir H, Boujmal R, Bensalah M O, Rodrigue D, Bouhfid R, Qaiss A E K. Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 2016, 98, 36–43.CrossRefGoogle Scholar
  28. [28]
    Essabir H, Hilali E, El Minor H, Bensalah M O, Bouhfid R, Qaiss A. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan luffa sponge/high density polyethylene. Journal of Biobased Material and Bioenergy, 2015, 9, 350–357.CrossRefGoogle Scholar
  29. [29]
    Raji M, Essabir H, Essassi E M, Rodrigue D, Bouhfid R, Qaiss A. Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with Illite clay. Polymer Composites, 2016, DOI: https://doi.org/10.1002/pc.24096 Google Scholar
  30. [30]
    Essabir H, Bensalah M O, Bouhfid R, Qaiss A. Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: Mechanical and thermal properties. Journal of Biobased Material and Bioenergy, 2014, 8, 344–351.CrossRefGoogle Scholar
  31. [31]
    Kakou C A, Essabir H, Bensalah M O, Bouhfid R, Rodrigue D, Qaiss A. Hybrid composites based on polyethylene and coir/oil palm fibers. Journal of Reinforced Plastics and Composites, 2015, 34, 1684–1697.CrossRefGoogle Scholar
  32. [32]
    Laaziz S A, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R, Qaiss A. Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules, 2017, 104, 30–42.CrossRefGoogle Scholar

Copyright information

© Jilin University 2018

Authors and Affiliations

  • Wafa Ouarhim
    • 1
    • 2
  • Mohammed-Ouadi Bensalah
    • 2
  • Denis Rodrigue
    • 3
  • Hamid Essabir
    • 1
  • Rachid Bouhfid
    • 1
  • Abou el kacem Qaiss
    • 1
  1. 1.Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Institute of Nanomaterials and Nanotechnology (NANOTECH)Laboratory of Polymer ProcessingRabatMorocco
  2. 2.Faculty of Science, Laboratory of Mechanic and Materials (LMM)Mohammed V-Rabat, UniversityRabatMorocco
  3. 3.Department of Chemical Engineering and CERMAUniversité LavalQuebecCanada

Personalised recommendations