Biological characteristic and biocontrol mechanism of Trichoderma harzianum T-A66 against bitter gourd wilt caused by Fusarium oxysporum

Abstract

We isolated a new Trichoderma harzianum strain, named T-A66. Potato dextrose agar (PDA) was the best medium for both mycelium growth and sporulation of T-A66 strain, while sucrose and potassium nitrate were the best source of carbon and nitrate, respectively. T-A66 strain and its culture filtrate significantly antagonized the growth of the pathogen Fusarium oxysporum in in vitro tests. An experiment using potted plants showed that the T-A66 strain promoted growth and induced disease resistance of bitter gourd seedlings to bitter gourd wilt caused by F. oxysporum, by inducing quick H2 O2 burst and callose deposition, as well as increasing antioxidant enzymes activities and phenolic compounds content. Indole acetic acid (IAA) was involved in the beneficial effects of T-A66. Ultimately, T-A66 strain diminished membrane lipid peroxidation and cell death, and controlled successfully bitter gourd wilt in greenhouse with a biocontrol efficiency of 90.32% after 15 days of F. oxysporum inoculation. The results suggested a good biocontrol potential of T-A66 strain against bitter gourd wilt.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Al-Taweil HI, Osman MB, Hamid AA, Yusof WMW (2009) Optimizing of Trichoderma viride cultivation in submerged state fermentation. Am J Appl Sci 6:1284–1288. https://doi.org/10.3844/ajassp.2009.1284.1288

  2. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CMJ, Bakker PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14 Bio Control 65:14–23. https://doi.org/10.1016/j.biocontrol.2013.01.009

    Article  Google Scholar 

  3. Amsellem Z, Zidack NK, Quimby PC Jr, Gressel J (1999) Long-term dry preservation of viable mycelia of two mycoherbicidal organisms. Crop Prot 18:643–649. https://doi.org/10.1016/S0261-2194(99)00070-8

    Article  Google Scholar 

  4. Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Benítez T, Rincón AM, Carmen Limón M, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260. https://www.im.microbios.org

  6. Chen ZD, Huang RK, Li QQ, Wen JL, Chen QY, Liang JZ (2014) Disease resistance evaluation of bitter gourd germplasm to Fusarium wilt at seedling stage. Journal of Southern Agriculture 45:1776–1780

    Google Scholar 

  7. Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91. https://doi.org/10.1093/jxb/32.1.79

    CAS  Article  Google Scholar 

  8. Fontenelle ADB, Guzzo SD, Lucon CMM, Harakava R (2011) Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot 30, 1492 – 500. https://doi.org/10.1016/j.cropro.2011.07.019

  9. Ghassempour A, Mollayi S, Farzaneh M, Sharifi-Tehrani A, Aboul-Enein HY (2011) Variation of Catechin, epicatechin and their enantiomers concentrations before and after wheat cultivar-Puccinia triticina infection. Food Chem 125:1287–1290. https://doi.org/10.1016/j.foodchem.2010.10.028

  10. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 963401. https://doi.org/10.6064/2012/963401

  11. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. https://doi.org/10.1038/nrmicro797

    CAS  Article  PubMed  Google Scholar 

  12. Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194. https://doi.org/10.1094/PHYTO-96-0190

    CAS  Article  PubMed  Google Scholar 

  13. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. https://doi.org/10.1099/mic.0.052274-0

    CAS  Article  PubMed  Google Scholar 

  14. Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127, 817–831. https://doi.org/10.1104/pp.010188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Kotasthane A, Agrawal T, Kushwah R, Rahatkar OV (2015) In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. Eur J Plant Pathol 141:523–543. https://doi.org/10.1007/s10658-014-0560-0

    CAS  Article  Google Scholar 

  16. Lewis JA, Papavizas GC (1983) Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil Biol Biochem 15:351–357. https://doi.org/10.1016/0038-0717(83)90083-4

    Article  Google Scholar 

  17. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant Microbe In 24:183–193. https://doi.org/10.1094/MPMI-07-10-0149

    CAS  Article  Google Scholar 

  18. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368. https://doi.org/10.4161/psb.5.4.10871

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Martínez-Medina A, Alguacil MDM, Pascual JA, Wees SCMV (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815. https://doi.org/10.1007/s10886-014-0478-1

    CAS  Article  PubMed  Google Scholar 

  20. Massart S, Jijakli HM (2007) Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Meth 69:229–241. https://doi.org/10.1016/j.mimet.2006.09.010

    CAS  Article  Google Scholar 

  21. Mehta J, Jakhetia M, Choudhary S, Mirza J, Sharma D, Khatri P, Gupta P, Nair MM (2012) Impact of carbon & nitrogen sources on the Trichoderma viride (Biofungicide) and Beauveria bassiana (entomopathogenic fungi). Eur J Exp Biol 2:2061–2067

  22. Moore-Landecker E (1996) Fundamentals of the fungi. Fourth Edition, Prentice-Hall Inc. USA. P 574

  23. Mutawila C, Vinale F, Halleen F, Lorito M, Mostert L (2016) Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol 65:104–113. https://doi.org/10.1111/ppa.12385

    CAS  Article  Google Scholar 

  24. Nuntagij A, Abe M, Uchiumi T, Seki Y, Boonkerd N, Higashil S (1997) Characterization of Bradyrhizobium strains isolated from soybean cultivation in Thailand. J Gen Appl Microbiol 43:183–187

    CAS  Article  Google Scholar 

  25. Pal KK, Gardener BMS (2006) Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

    Article  Google Scholar 

  26. Rahman A, Begum MF, Rahman M, Bari MA, Illias GNM, Alam MF (2011) Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste. Turk J Biol 35:183–194. https://doi.org/10.3906/biy-0905-8

    Article  Google Scholar 

  27. Rai D, Tewari AK (2016) Evaluation of different carbon and nitrogen sources for better growth and sporulation of T. harzianum (Th14). J Agric Biotech Sustain Dev 8:67–70. https://doi.org/10.5897/JABSD2016.0262

  28. Rajput AQ, Shahzad S (2015) Growth and sporulation of Trichoderma polysporum on organic substrates by addition of carbon and nitrogen sources. Pak J Bot 47:979–986

    CAS  Google Scholar 

  29. Sharma V, Salwan R, Sharma PN (2017) The comparative mechanistic aspects of Trichoderma and probiotics: scope for future research. Physiol Mol Plant P 100:84–96. https://doi.org/10.1016/j.pmpp.2017.07.005

    CAS  Article  Google Scholar 

  30. Singh PK, Vyas D (2016) Trichoderma species: the history and evolution of current concepts of biological control. Journal of the Botanical Society 46:112–129

    Google Scholar 

  31. Soong YY, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417. https://doi.org/10.1016/j.foodchem.2004.02.003

    CAS  Article  Google Scholar 

  32. Thatcher LF, Williams AH, Garg G, Buck SAG, Singh KB (2016) Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genom 17:860. https://doi.org/10.1186/s12864-016-3192-2

    CAS  Article  Google Scholar 

  33. Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    CAS  Article  Google Scholar 

  34. Vinale F, D’Ambrosio G, Abadi K, Scala F, Marra R, Turra D, Woo SL, Lorito M (2004) Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride. J Zhejiang Univ-Sc A 30:2–8. http://www.zjujournals.com/agr/CN/Y2004/V30/14/425

  35. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10. https://doi.org/10.1016/j.soilbio.2007.07.002

    CAS  Article  Google Scholar 

  36. Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550. https://doi.org/10.1177/1934578X1200701133

    CAS  Article  PubMed  Google Scholar 

  37. Woo SL, Michelina R, Francesco V, Marco N, Roberta M, Nadia L, Alberto P, Stefania L, Gelsomina M, Matteo L (2014) Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8:71–126. https://doi.org/10.2174/1874437001408010071

    Article  Google Scholar 

  38. Yang XC, Kang LY, Tien P (1996) Resistance of tomato infected with cucumber mosaic virus satellite RNA to potato spindle tuber viroid. Ann Appl Biol 129:543–551. https://doi.org/10.1111/j.1744-7348.1997.tb05795.x

    Article  Google Scholar 

  39. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microb 69:7343–7353. https://doi.org/10.1128/AEM.69.12.7343-7353.2003

    CAS  Article  Google Scholar 

  40. Yi SY, Shirasu K, Moon JS, Lee SG, Kwon SY (2014) The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLOS ONE 9:e88951. https://doi.org/10.1371/journal.pone.0088951

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay RS (2017) Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Braz J Bot 40:651–664. https://doi.org/10.1007/s40415-017-0382-3

    Article  Google Scholar 

  42. Zhang FL, Ge HL, Zhang F, Guo N, Wang YC, Chen L, Ji XE, Li CW (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Bioch 100:64–74. https://doi.org/10.1016/j.plaphy.2015.12.017

  43. Zhang FL, Chen C, Zhang F, Gao LD, Liu JD, Chen L, Fan XN, Liu C, He YT, Chen C, Ji XE (2017) Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean. J Plant Physiol 210:84–94. https://doi.org/10.1016/j.jplph.2016.10.012

Download references

Acknowledgements

This work was supported by grants from the Key Scientific Research Projects of Institutions of Higher Learning of Henan (20A210031), the Natural Science Foundation of Henan (182300410097), the Open Fund of Key Laboratory of three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU) (2018KBC07), the School-based Project of Zhoukou Normal University (ZKNUB1201802).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fuli Zhang or Kai Dou or Faju Chen.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest.

Human and animal rights

This research did not involve human participants and/or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3.18 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Liu, C., Wang, Y. et al. Biological characteristic and biocontrol mechanism of Trichoderma harzianum T-A66 against bitter gourd wilt caused by Fusarium oxysporum. J Plant Pathol (2020). https://doi.org/10.1007/s42161-020-00573-8

Download citation

Keywords

  • T. harzianum isolate T-A66
  • Biocontrol potential
  • Bitter gourd wilt
  • Callose deposition
  • IAA production