Skip to main content
Log in

Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most severe bacterial diseases of rice. This study identified and characterized five Xoo bacteriophages X1, X2, X3, X4, and X5, isolated from diseased rice leaves in China as potential biocontrol agents. Electron microscopy showed that the five phages have contractile tails thus all belong to the family Myoviridae possessing icosahedral heads, necks and base plates with tail fibres. The head diameters ranged from 57.49 to 85.27 nm, while the tail lengths ranged from 75.88 to 112.47 nm. It was confirmed that the phages had the expected double-stranded DNA genomes. Phylogenetic analysis of DNAP gene indicated that the five phages could be clustered into one group with phage OP2, but were well separated from other Xoo phages. Significant physiological changes were observed in Xoo after infection by these phages, which differed in their host range and infection ability. Phage X3 had the broadest host range, lysing 22 out of the 23 Xoo strains tested, and had the longest latent period of 40 min with a burst size of 50-plaque forming units per infected cell. It caused 53% degradation of exopolysaccharide production, 43% degradation of biofilm, while the highest rate of bacteriophage-resistant bacterial colonies emerged at log 4 PFU/ml of strain Gz 0011. Application of phage X3 decreased disease severity in vivo: it was more effective (83.1% decrease) if applied by spraying before pathogen inoculation rather than after (28.9–73.9%), and seed treatment was also very effective (95.4% decrease).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  • Adams MH (1959) Bacteriophages. Wiley-Interscience Publishers, New York

    Google Scholar 

  • Adams MJ, Carstens EB (2012) Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses. Arch Virol 157:1411–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad AA, Askora A, Kawasaki T, Fujie M, Yamada T (2014) The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 5:321

    Article  PubMed  PubMed Central  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    Article  CAS  PubMed  Google Scholar 

  • Bae JY, Wu J, Lee HJ, Jo EJ, Murugaiyan S, Chung E, Lee SW (2012) Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J Microbiol Biotechnol 22:1613–1620

    Article  PubMed  Google Scholar 

  • Bhunchoth A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kotera S, Narulita E, Kawasaki T, Fujie M, Yamada T (2015) Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J Appl Microbiol 118:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Birge EA (2000) Bacterial and bacteriophage genetics, 4th edn. Springer, New York

    Book  Google Scholar 

  • Brussow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108:13–16

    Article  CAS  PubMed  Google Scholar 

  • Buttimer C, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A (2017) Bacteriophages and bacterial plant diseases. Front Microbiol 8:34

    PubMed  PubMed Central  Google Scholar 

  • Chae JC, Hung NB, Yu SM, Lee HK, Lee YH (2014) Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in Paddy fields and its potential to control bacterial leaf blight of Rice. J Microbiol Biotechnol 24:740–747

    Article  CAS  PubMed  Google Scholar 

  • Clokie MRJ, Kropinski AM (2009) Bacteriophages, Methods and Protocols: Isolation, Characterization, and Interactions Vol 1 (pp. 307)

  • Doffkay Z, Doemoetoer D, Kovacs T, Rakhely G (2015) Bacteriophage therapy against plant, animal and human pathogens. Acta Biologica Szegediensis 59:291–302

    Google Scholar 

  • Ezuka A, Kaku H (2000) A historical review of bacterial blight of rice. Bull Natl Inst Agrobiol Resour 15:61–74

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from dna-sequences - a maximum-likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Hortscience 36:98–100

    Article  Google Scholar 

  • Guo Y, Sagaram US, Kim J, Wang N (2010) Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp citri. Appl Environ Microbiol 76:2234–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes KA, Sutherland IW, Clark JT, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases--novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Matsuura T, Ohara T, Azegami K (2006a) Sequence analysis of the genome of OP2, a lytic bacteriophage of Xanthomonas oryzae pv. oryzae. J. Gen. Plant Pathol 172:104–110

    Google Scholar 

  • Inoue Y, Matsuura T, Ohara T, Azegami K (2006b) Bacteriophage OP1, lytic for Xanthomonas oryzae pv. oryzae, changes its host range by duplication and deletion of the small domain in the deduced tail fiber gene. J. Gen. Plant Pathol 172:111–118

    Google Scholar 

  • Ji ZY, Ji CH, Liu B, Zou LF, Chen GY, Yang B (2016) Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun 7:13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPY, Nerca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 56:537–541

    Google Scholar 

  • Kuo TT, Huang TC, Chow TY (1969) A filamentous bacteriophage from Xanthomonas oryzae. Virology 39:548–555

    Article  CAS  PubMed  Google Scholar 

  • Kuo TT, Cheng LC, Yang CM, Yang SE (1971) Bacterial leaf blight of rice plant IV. Effect of bacteriophages on the infectivity of Xanthomonas oryzae. Bot Bull Acad Sinica 12:1–9

    Google Scholar 

  • Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91:871–878

    Article  CAS  PubMed  Google Scholar 

  • Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CN, Lin JW, Chow TY, Tseng YH, Weng SF (2006) A novel lysozyme from Xanthomonas oryzae phage phi Xo411 active against Xanthomonas and Stenotrophomonas. Protein Expr Purif 50:229–237

    Article  CAS  PubMed  Google Scholar 

  • Lee CN, Hu RM, Chow TY, Lin JW, Cheb HY, Tseng YH, Weng SF (2007) Comparison of genomes of three Xanthomonas oryzae bacteriophages. BMC Genomics 8:442–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CN, Lin JW, Weng SF, Tseng YH (2009) Genomic characterization of the intron-containing T7-like phage phiL7 of Xanthomonas campestris. Appl Environ Microbiol 75:7828–7837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Liu B, Yu R, Tao Z, Wang Y, Xie G, Li H, Sun G (2011) Bacterial brown stripe of rice in soil-less culture system caused by Acidovorax avenae subsp. avenae in China. J Gen Plant Pathol 197:673–682

    Google Scholar 

  • Lin N, You BY, Huang CY, Kuo CW, Wen FS, Yang JS, YH T (1994) Characterization of two novel filamentous phages of Xanthomonas. J Gen Virol 5:2543–2547

    Article  Google Scholar 

  • Mew TW (1987) Current status and future-prospects of research on bacterial-blight of rice. Annu Rev Phytopathol 25:359–382

    Article  Google Scholar 

  • Mew TW, Alvarez MA, Leach EJ, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–12

    Article  Google Scholar 

  • Momol MT, Jones JB, Olson SM, Obradovic A, Balogh B, King P (2002) Integrated management of bacterial spot on tomato in Florida. Rep PP192, EDIS, Inst Food Agric Sci, Univ FL

  • Nagy JK, Kiraly L, Ildiko S (2012) Phage therapy for plant disease control with a focus on fire blight. Cent Eur J Biol 7:1–12

    Google Scholar 

  • Pradhan BB, Ranjan M, Chatterjee S (2012) XadM, a novel adhesin of Xanthomonas oryzae pv. oryzae, exhibits similarity to Rhs family proteins and is required for optimum attachment, biofilm formation, and virulence. Mol Plant-Microbe Interact 25:1157–1170

    Article  CAS  PubMed  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609

    Article  CAS  PubMed  Google Scholar 

  • Rigano LA, Siciliano F, Enrique R, Sendin L, Filippone P, Torres PS, Questa J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant-Microbe Interact 20:1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Saccardi A, Gambin E, Zaccardelli M, Barone G, Mazzuchi U (1993) Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchad. Phytopathol Mediterr 32:206–210

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory press, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto SS (1960) Classification of strains of Xanthomonas oryzae on the basis of their susceptibility against bacteriophages. Ann Phytopathol Soc Jpn 25:193–198

    Article  Google Scholar 

  • Worthington RJ, Rogers SA, Huigens RW III, Melander C, Ritchie DF (2012) Foliar-applied small molecule that suppresses biofilm formation and enhances control of copper-resistant Xanthomonas euvesicatoria on pepper. Plant Dis 96:1638–1644

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Chu C, Fang C, Chu L, H L (1980) Application of phage technique in forecasting the bacterial leaf blight of rice. Acta Phytopathologica Sinica 10:65–70

    Google Scholar 

  • Xu Z, Zhu J, Lu Q, Fang C, M W (1982) Comparison of some properties of two groups of phage of Xanthomonas oryzae Dowson. Acta Phytopathologica Sinica 12:1–6

    Google Scholar 

  • Yuzenkova J, Nechaev S, Berlin J, Rogulja D, Kuznedelov K, Inman R, Mushegian A, Severinov K (2003) Genome of Xanthomonas oryzae bacteriophage XP10: an odd T-odd phage. J Mol Biol 330:735–748

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wei C, Jiang W, Wang L, Li C, Wang Y, Dow JM, Sun W (2013) The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS One 8:e59428

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Provincial Natural Science Foundation of China (Z19C140006), National Natural Science Foundation of China (31872017, 31571971, 31371904, 31801787), Zhejiang Provincial Project (2018C02G2071267, 2017C02002), Shanghai Agricultural Basic Research Project (2014:7-3-1), the Fundamental Research Funds for the Central Universities, the Agricultural Ministry of China (nyhyzx 201303015), Dabeinong Funds for Discipline Development and Talent Training in Zhejiang University, Key Subject Construction Program of Zhejiang for Modern Agricultural Biotechnology and Crop Disease Control (2010DS700124- KF1710).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Li or Jianping Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunyemi, S.O., Chen, J., Zhang, M. et al. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae. J Plant Pathol 101, 263–273 (2019). https://doi.org/10.1007/s42161-018-0188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-018-0188-6

Keywords

Navigation