Journal of Plant Pathology

, Volume 100, Issue 2, pp 163–170 | Cite as

Molecular and biological characterization of an isolate of capsicum chlorosis virus from IRAN

  • Hossein Bayat
  • Afshin Hassani-Mehraban
  • Naser Safaie
  • Masoud Shams-bakhsh
Original Article


A virus-like disease characterized by chlorotic ring spot symptoms on the leaves was observed in plants of Rudbeckia sp. in Mahallat (Markazi province, Iran). The viral agent was mechanically transmitted to Nicotiana benthamiana and designated RM. A PCR fragment was amplified from inoculated N. benthamiana plants, using generic tospovirus primers derived from the nucleocapsid gene of the Asian 1 clade of tospoviruses. Sequence analysis of this fragment revealed 88–97% nucleotide identity and 91–99% amino acid identity with those of capsicum chlorosis virus (CaCV) isolates. The entire S RNA, NSM gene and partial L gene were sequenced revealing typical tospoviral genomic features. The sequence of the nucleocapsid (N) protein showed the closest relationship (97.8% identity) with that of the gloxinia isolate (HT-1) of CaCV from the USA. The rudbeckia virus was therefore identified as an isolate of CaCv. The virus was able to infect a limited number of plant species tested, showing symptoms distinct from those elicited by other CaCV isolates. To our knowledge, this is the first report of an isolate of CaCV in Iran and the Middle East.


Tospoviridae Orthotospovirus Rudbeckia Iran 



This study was partially supported by Ornamental Plant Research Center of Iran.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.


  1. Adams MJ, Lefkowitz EJ, King AMQ, Harrach BZ, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon HIN, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Gorbalenya AE, Daviso AJ (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2017). Arch Virol 162:2505–2538CrossRefPubMedGoogle Scholar
  2. Bald-Blume N, Bergervoet JH, Maiss E (2017) Development of a molecular assay for the general detection of tospoviruses and the distinction between tospoviral species. Arch Virol 162:1519–1528CrossRefPubMedGoogle Scholar
  3. Bananej K, Shahraeen N, Ahoonmanesh A, Lesemann D, Shahriary D (1998) Identification of tomato spotted wilt virus from tomato fields in Varamin area. Iranian. J Plant Pathol 32:30–36Google Scholar
  4. Birithia R, Subramanian S, Villinger J, Muthomi JW, Narla RD, Pappu HR (2012) First report of tomato yellow ring virus (Tospovirus, Bunyaviridae) infecting tomato in Kenya. Plant Dis 96:1384–1384CrossRefGoogle Scholar
  5. Chen CC, Huang CH, Chen TC, Yeh SD, Cheng YH, Hsu HT, Chang CA (2007a) First report of capsicum chlorosis virus causing yellow stripes on calla lilies in Taiwan. Plant Dis 91:1201CrossRefGoogle Scholar
  6. Chen K, Xu Z, Yan L, Wang G (2007b) Characterization of a new strain of capsicum chlorosis virus from peanut (Arachis hypogaea L.) in China. J Phytopathol 155:178–181CrossRefGoogle Scholar
  7. Chen CC, Huang CH, Cheng YH, Chen TC, Yeh SD, Chang CA (2009) First report of capsicum chlorosis virus infecting amaryllis and blood lily in Taiwan. Plant Dis 93:1346–1346CrossRefGoogle Scholar
  8. Chen TC, Li JT, Lin YP, Yeh YC, Kang YC, Huang LH, Yeh SD (2012) Genomic characterization of calla lily chlorotic spot virus and design of broad-spectrum primers for detection of tospoviruses. Plant Pathol 61:183–194CrossRefGoogle Scholar
  9. Chiemsombat P, Gajanandana O, Warin N, Hongprayoon R, Bhunchoth A, Pongsapich P (2008) Biological and molecular characterization of tospoviruses in Thailand. Arch Virol 153:571–577CrossRefPubMedGoogle Scholar
  10. Clark MF, Adams A (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483CrossRefPubMedGoogle Scholar
  11. de Haan P, Wagemakers L, Peters D, Goldbach R (1990) The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001–1007CrossRefPubMedGoogle Scholar
  12. de Haan P, Kormelink R, de Oliveira Resende R, van Poelwijk F, Peters D, Goldbach R (1991) Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72:2207–2216CrossRefPubMedGoogle Scholar
  13. Gamage SW, Persley DM, Higgins CM, Dietzgen RG (2015) First complete genome sequence of a capsicum chlorosis tospovirus isolate from Australia with an unusually large S RNA intergenic region. Arch Virol 160:869–872CrossRefGoogle Scholar
  14. Ghotbi T, Shahraeen N, Winter S (2005) Occurrence of tospoviruses in ornamental and weed species in Markazi and Tehran provinces in Iran. Plant Dis 89:425–429CrossRefGoogle Scholar
  15. Golnaraghi AR, Pourrahim R, Shahraeen N, Farzadfar S (2002) First report of groundnut bud necrosis virus in Iran. Plant Dis 86:561CrossRefGoogle Scholar
  16. Groves C, German T, Dasgupta R, Mueller D, Smith DL (2016) Seed transmission of soybean vein necrosis virus: the first tospovirus implicated in seed transmission. PLoS One 11:e0147342CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hassani-Mehraban A, Saaijer J, Peters D, Goldbach R, Kormelink R (2005) A new tomato-infecting tospovirus from Iran. Phytopathology 95:852–858CrossRefPubMedGoogle Scholar
  18. Hassani-Mehraban A, Saaijer J, Peters D, Goldbach R, Kormelink R (2007) Molecular and biological comparison of two tomato yellow ring virus (TYRV) isolates: challenging the Tospovirus species concept. Arch Virol 152:85–96CrossRefPubMedGoogle Scholar
  19. Hassani-Mehraban A, Botermans M, Verhoeven JTJ, Meekes E, Saaijer J, Peters D, Goldbach R, Kormelink R (2010) A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch Virol 155:423–428CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hassani-Mehraban A, Westenberg M, Verhoeven J, van de Vossenberg B, Kormelink R, Roenhorst J (2016) Generic RT-PCR tests for detection and identification of tospoviruses. J Virol Methods 233:89–96CrossRefPubMedGoogle Scholar
  21. Hsu H-T, Ueng PP, Chu F-H, Ye Z, Yeh S-D (2000) Serological and molecular characterization of a high temperature-recovered virus belonging to tospovirus serogroup IV. J Gen Plant Pathol 66:167–175CrossRefGoogle Scholar
  22. Khatabi B, Wen RH, Hershman DE, Kennedy BS, Newman MA, Hajimorad MR (2012) Generation of polyclonal antibodies and serological analyses of nucleocapsid protein of soybean vein necrosis-associated virus: a distinct soybean infecting tospovirus serotype. Eur J Plant Pathol 133:783–790CrossRefGoogle Scholar
  23. Kikkert M, Verschoor A, Kormelink R, Rottier P, Goldbach R (2001) Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J Virol 75:1004–1012CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65CrossRefPubMedGoogle Scholar
  25. Kunkalikar S, Poojari S, Rajagopalan P, Zehr UB, Naidu RA, Kankanallu RS (2007) First report of capsicum chlorosis virus in tomato in India. Plant Health Prog 10:1094Google Scholar
  26. Kunkalikar SR, Sudarsana P, Rajagopalan P, Zehr UB, Ravi KS (2010) Biological and molecular characterization of capsicum chlorosis virus infecting chilli and tomato in India. Arch Virol 155:1047–1057CrossRefPubMedGoogle Scholar
  27. Li W, Lewandowski DJ, Hilf ME, Adkins S (2009) Identification of domains of the tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390:110–121CrossRefPubMedGoogle Scholar
  28. Lokesh B, Rashmi PR, Amruta BS, Srisathiyanarayanan D, Murthy MR, Savithri HS (2010) NSs encoded by groundnut bud necrosis virus is a bifunctional enzyme. PLoS One 5:e9757CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lovato FA, Nagata T, Resende R, Ávila A, Inoue-Nagata A (2004) Sequence analysis of the glycoproteins of tomato chlorotic spot virus and groundnut ringspot virus and comparison with other tospoviruses. Virus Genes 29:321–328CrossRefPubMedGoogle Scholar
  30. Margaria P, Bosco L, Vallino M, Ciuffo M, Mautino G, Tavella L, Turina M (2014) The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J Virol 88:5788–5802CrossRefPubMedPubMedCentralGoogle Scholar
  31. McMichael LA, Persley DM, Thomas JE (2002) A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Australas Plant Pathol 31:231–239CrossRefGoogle Scholar
  32. Meng J, Liu P, Zhu L, Zou C, Li J, Chen B (2015) Complete genome sequence of mulberry vein banding associated virus, a new tospovirus infecting mulberry. PLoS One 10:e0136196CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moini AA, Izadpanah K (2001) Report of impatiens necrotic spot virus infection of tobacco in Iran. Iranian. J Plant Pathol 37:93Google Scholar
  34. Oliver J, Whitfield A (2016) The genus Tospovirus. Annu Rev Virol 3:101–124CrossRefPubMedGoogle Scholar
  35. Pappu H, Jones R, Jain R (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236CrossRefPubMedGoogle Scholar
  36. Persley DM, Thomas JE, Sharman M (2006) Tospoviruses—an Australian perspective. Australas Plant Pathol 35:161–180CrossRefGoogle Scholar
  37. Plyusnin A, Beaty B, Elliott R, Goldbach R, Kormelink R, Lundkvist A, Schmaljohn C, Tesh R (2012) Family Bunyaviridae. In: King AM, Adams MJ, Lefkowitz EJ, Carstens EB (eds) Virus taxonomy. Ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego, pp 725–741Google Scholar
  38. Premachandra W, Borgemeister C, Maiss E, Knierim D, Poehling H-M (2005) Ceratothripoides claratris, a new vector of a capsicum chlorosis virus isolate infecting tomato in Thailand. Phytopathology 95:659–663CrossRefPubMedGoogle Scholar
  39. Rao X, Wu Z, Li Y (2013) Complete genome sequence of a watermelon silver mottle virus isolate from China. Virus Genes 46:576–580CrossRefPubMedGoogle Scholar
  40. Riley DG, Joseph SV, Srinivasan R, Diffie S (2011) Thrips vectors of tospoviruses. J Integr Pest Manag 2:I1–I10CrossRefGoogle Scholar
  41. Rotenberg D, Jacobson AL, Schneweis DJ, Whitfield AE (2015) Thrips transmission of tospoviruses. Curr Opin Virol 15:80–89CrossRefPubMedGoogle Scholar
  42. Shahraeen N, Ghotbi T, Mehraban AH (2002) Occurrence of impatiens necrotic spot virus in ornamentals in Mahallat and Tehran provinces in Iran. Plant Dis 86:694–694CrossRefGoogle Scholar
  43. Sharma A, Kulshrestha S (2014) First report of Amaranthus sp. as a natural host of capsicum chlorosis virus in India. Virus Dis 25:412–413CrossRefGoogle Scholar
  44. Silva M, Martins C, Bezerra I, Nagata T, De Avila A, Resende RDO (2001) Sequence diversity of NSm movement protein of tospoviruses. Arch Virol 146:1267–1281CrossRefPubMedGoogle Scholar
  45. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Lett 532:75–79CrossRefPubMedGoogle Scholar
  46. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ullman DE, German TL, Sherwood JL, Westcot DM, Cantone FA (1993) Tospovirus replication in insect vector cells: Immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456–463CrossRefGoogle Scholar
  48. Webster CG, Reitz SR, Perry KL, Adkins S (2011) A natural M RNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413:216–225CrossRefPubMedGoogle Scholar
  49. Whitfield AE, Ullman DE, German TL (2005) Tospovirus-thrips interactions. Annu Rev Phytopathol 43:459–489CrossRefPubMedGoogle Scholar
  50. Zarzyńska-Nowak A, Rymelska N, Borodynko N, Hasiów-Jaroszewska B (2015) The occurrence of tomato yellow ring virus on tomato in Poland. Plant Dis 100:234CrossRefGoogle Scholar
  51. Zhai Y, Bag S, Mitter N, Turina M, Pappu HR (2014) Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae). Arch Virol 159:1499–1504CrossRefPubMedGoogle Scholar
  52. Zhang Z., Wang D., Yu C., Wang Z., Dong J., Shi K., Yuan X., 2016. Identification of three new isolates of tomato spotted wilt virus from different hosts in China: molecular diversity, phylogenetic and recombination analyses. Virol J 13:8.
  53. Zheng Y-X, Chen C-C, Yang C-J, Yeh S-D, Jan F-J (2008) Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur J Plant Pathol 120:199–209CrossRefGoogle Scholar
  54. Zheng Y.-X., Chen C.-C., Jan F.-J., 2011. Complete nucleotide sequence of capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses. Arch Virol 156: 421–432Google Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018

Authors and Affiliations

  • Hossein Bayat
    • 1
  • Afshin Hassani-Mehraban
    • 2
  • Naser Safaie
    • 1
  • Masoud Shams-bakhsh
    • 1
  1. 1.Plant Pathology Department, Faculty of AgricultureTarbiat Modares UniversityTehranIran
  2. 2.WageningenThe Netherlands

Personalised recommendations