A serological approach for the identification of the effector hopz5 of Pseudomonas syringae pv. actinidiae: a tool for the rapid immunodetection of kiwifruit bacterial canker

  • Hang Chen
  • Yue Hu
  • Kaiyue Qin
  • Xunzhe Yang
  • Zijuan Jia
  • Qing Li
  • Huabao Chen
  • Hui Yang
Original Article
  • 10 Downloads

Abstract

Pseudomonas syringae pv. actinidiae (Psa) is responsible for outbreaks of kiwifruit canker over the world, and the cause of heavy economic losses. Although molecular detection methods for this bacterium are well-established, its serological detection is much less advanced. A polyclonal antiserum to the bacterial effector-hopz5 was raised (PAb:hopz5) and its specificity tested. No cross-reaction was observed with other bacteria, including Pseudomonas syringae pv. tomato, Pseudomonas syringae pv. theae, Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas koreensis, Bacillus subtilis, Bacillus megaterium, Ralstonia solanacearum, Erwinia rhapontica, Pseudomonas syringae pv. syringae. PAb:hopz5 was able to detect Psa from culture and infected plant samples, thus representing a suitable tool for the immunodetection of the agent of kiwifruit bacterial canker in field samples. The detection sensitivity of a colloidal gold immunochromatographic strip was high, up to 2.2 × 103 CFU/ml. Thus PAb:hopz5 constitutes a suitable and accurate tool for detection of Psa and haplotype distribution.

Keywords

Pseudomonas syringae pv. actinidiae hopz5 Serology Immunodetection Colloidal gold immunochromatographic strip 

Notes

Acknowledgements

The study was financed by the project of science and technology ministry in Sichuan Province (2017NFP0115).

References

  1. Balestra GM, Taratufolo MC, Vinatzer BA, Mazzaglia A (2013) A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin. Plant Dis 97:472–478CrossRefGoogle Scholar
  2. Ballio A, Graniti A (1991) Phytotoxins and their involvement in plant disease. Experientia 47:751–755CrossRefGoogle Scholar
  3. Bereswill S, Bugert P, Volksch B, Ullrich M, Bender CL, Geider K (1994) Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol 60:2924–2930PubMedPubMedCentralGoogle Scholar
  4. Butler MI, Stockwell PA, Black MA, Day RC, Lamont IL, Poulter RTM (2013) Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One 8:e57464CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chapman JR, Taylor RK, Weir MS et al (2012) Phylogenetic relationships among global populations of Pseudomoas syringae pv. actinidiae. Phytopathology 102:1034–1044CrossRefPubMedGoogle Scholar
  6. Ciarroni S, Gallipoli L, Taratufolo MC (2015) Development of a multiple loci variable of tandem repeats analysis (MLVA) to unravel the intra-pathovar structure of Pseudomonas syringae pv. actinidiae populations worldwide. PLoS One 10:2018–2025CrossRefGoogle Scholar
  7. Cimmino A, Iannaccone M, Petriccione M et al (2017) An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides: a tool for rapid immunochemical detection of kiwifruit bacterial canker. Phytochem Lett 19:136–140CrossRefGoogle Scholar
  8. Everett K, Taylor R, Romberg M et al (2011) First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Aust Plant Dis Notes 6:67–71CrossRefGoogle Scholar
  9. Ferrante P, Takikawa Y, Scortichini M (2015) Pseudomonas syringae pv. actinidiae strains isolated from past and current epidemics to Actinidia spp. reveal a diverse population structure of the pathogen. Eur J Plant Pathol 142:677–689CrossRefGoogle Scholar
  10. Fujikawa T, Sawada H (2016) Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5. Sci Rep 6:21399CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gallelli A, L’Aurora A, Loreti S (2011) Gene sequence analysis for the molecular detection of Pseudomonas syringae pv. actinidiae: developing diagnostic protocols. J Plant Pathol 93:425–435Google Scholar
  12. Gallelli A, Talocci S, Pilotti M, Loreti S (2014) Real-time and qualitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker. Plant Pathol 63:264–276CrossRefGoogle Scholar
  13. Kim GH, Kim KH, Son KI et al (2016) Outbreak and spread of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae Biovar 3 in Korea. Plant Pathol J 32:545–551CrossRefPubMedPubMedCentralGoogle Scholar
  14. Koh YJ, Nou IS (2002) DNA markers for identification of Pseudomonas syringae pv. actinidiae. Mol Cells 13:309PubMedGoogle Scholar
  15. Koh YJ, Seo JK, Lee DH, Shin JS, Kim SH (1999) Chemical control of bacterial canker of kiwifruit. Plant Dis Agric Plants 5:95–99Google Scholar
  16. Koh HS, Kim GH, Lee YS, Koh YJ, Jung JS (2014) Molecular characteristics of Pseudomonas syringae pv. actinidiae strains isolated in Korea and a multiplex PCR assay for haplotype differentiation. Plant Pathol J 30:96–101CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li X, Li P, Zhang Q, Li R et al (2013) Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin a and zearalenone in agro-food. Biosens Bioelectron 49:426–432CrossRefPubMedGoogle Scholar
  18. Marques ASDA, Corbiere R, Gardan L et al (2000) Multiphasic approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. Eur J Plant Pathol 106:715–734CrossRefGoogle Scholar
  19. McCann HC, Rikkerink EHA, Bertels F et al (2013) Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 9:e1003503CrossRefPubMedPubMedCentralGoogle Scholar
  20. Moon J, Kim G, Lee S (2012) A gold nanoparticle and aflatoxin B1-BSA conjugates based lateral flow assay method for the analysis of aflatoxin B1. Materials 5:634–643CrossRefPubMedPubMedCentralGoogle Scholar
  21. Njukeng AP, Atiri GI, Hughes J, Winter S (2004) Development of serological procedures for rapid, sensitive and reliable detection of yam mosaic virus in yam tissues. Trop Sci 44:136–147CrossRefGoogle Scholar
  22. Rees-George J, Vanneste JL, Cornish DA et al (2010) Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S-23S rDNA inter-transcribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathol 59:453–464CrossRefGoogle Scholar
  23. Ruinelli M, Schneeberger PHH, Ferrante P et al (2017) Comparative genomics-informed design of two LAMP detection assays for detection of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae and discrimination of isolates belonging to the pandemic biovar 3. Plant Pathol 66:140–149CrossRefGoogle Scholar
  24. Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G (2012) Pseudomonas syringae pv. actinidiae: a reemerging multi-faceted, pandemic pathogen. Mol Plant Pathol 13:631–640CrossRefPubMedGoogle Scholar
  25. Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M (1989) Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. Jpn J Phytopathol 55:427–436CrossRefGoogle Scholar
  26. Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M (1989) Pseudomonas syringae pv. actinidiae pv. Nov.: the causal bacterium of canker of kiwifruit in Japan. Ann Phytopathol Soc Jpn 55:437–444CrossRefGoogle Scholar
  27. Vanneste JL, Poliakoff F, Audusseau C et al (2011) First report of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit in France. Plant Dis 95:1311–1312CrossRefGoogle Scholar
  28. Vinatzer BA, Teitzel GM, Lee MW (2006) The type III effector repertoire of Pseudomonas syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 62:26–44CrossRefPubMedGoogle Scholar
  29. Wu WD, Li M, Chen M et al (2017) Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia. Biosens Bioelectron 91:66–69CrossRefGoogle Scholar
  30. Xu T, Xu Q, Li G, Wang H, Li J, Shelver WL, Li J (2012) Strip-based immuno-assay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products. Talanta 101:85–90CrossRefPubMedGoogle Scholar
  31. Zhang C, Zhang Y, Wang S (2006) Development of multianalyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J Agric Food Chem 54:2502–2507CrossRefPubMedGoogle Scholar
  32. Zhou Y, Pan FG, Zhang YY et al (2009) Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples. Biosens Bioelectron 24:2744–2747CrossRefPubMedGoogle Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018

Authors and Affiliations

  • Hang Chen
    • 1
    • 2
  • Yue Hu
    • 1
  • Kaiyue Qin
    • 1
  • Xunzhe Yang
    • 1
  • Zijuan Jia
    • 1
  • Qing Li
    • 1
  • Huabao Chen
    • 1
  • Hui Yang
    • 1
  1. 1.College of Agronomy & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
  2. 2.Department of Agricultural TechnologyMeishan Vocational & Technical CollegeMeishanChina

Personalised recommendations