An Online Adaptive Internal Short Circuit Detection Method of Lithium-Ion Battery


Internal short circuit (ISC) is a critical cause for the dangerous thermal runaway of lithium-ion battery (LIB); thus, the accurate early-stage detection of the ISC failure is critical to improving the safety of electric vehicles. In this paper, a model-based and self-diagnostic method for online ISC detection of LIB is proposed using the measured load current and terminal voltage. An equivalent circuit model is built to describe the characteristics of ISC cell. A discrete-time regression model is formulated for the faulty cell model through the system transfer function, based on which the electrical model parameters are adapted online to keep the model accurate. Furthermore, an online ISC detection method is exploited by incorporating an extended Kalman filter-based state of charge estimator, an abnormal charge depletion-based ISC current estimator, and an ISC resistance estimator based on the recursive least squares method with variant forgetting factor. The proposed method shows a self-diagnostic merit relying on the single-cell measurements, which makes it free from the extra uncertainty caused by other cells in the system. Experimental results suggest that the online parameterized model can accurately predict the voltage dynamics of LIB. The proposed diagnostic method can accurately identify the ISC resistance online, thereby contributing to the early-stage detection of ISC fault in the LIB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10



Constant Current-Constant Voltage


Equivalent Circuit Model


Extended Kalman Filter


Equivalent Resistance


Electric Vehicle


Federal Urban Driving Schedule


Hybrid Electric Vehicle


Hybrid Pulse Experiment


Internal Short Circuit


Lithium-Ion Battery


Mean-Difference Model


Mean Absolute Error


Open Circuit Voltage




Recursive Least Square


Recursive Least Squares with Variant Forgetting Factor


Root-Mean-Squared Error


State of Charge


  1. 1.

    Sahinoglu, G.O., Pajovic, M., Sahinoglu, Z., Wang, Y., Orlik, P.V., Wada, T.: Battery state-of-charge estimation based on regular/recurrent gaussian process regression. IEEE Trans. Ind. Electron. 65(5), 4311–4321 (2018)

    Article  Google Scholar 

  2. 2.

    Wang, Y., Chen, Z.: A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. Appl. Energy 260, 114324 (2020)

    Article  Google Scholar 

  3. 3.

    Zheng, L., Zhu, J., Wang, G., Lu, D.D.C., He, T.: Lithium-ion battery instantaneous available power prediction using surface lithium concentration of solid particles in a simplified electrochemical model. IEEE Trans. Ind. Electron. 33(11), 9551–9560 (2018)

    Google Scholar 

  4. 4.

    Wei, Z., Zhao, J., Ji, D., Tseng, K.J.: A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model. Appl. Energy 204, 1264–1274 (2017)

    Article  Google Scholar 

  5. 5.

    Wei, Z., Meng, S., Xiong, B., Ji, D., Tseng, K.J.: Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer. Appl. Energy 181, 332–341 (2016)

    Article  Google Scholar 

  6. 6.

    Zhang, Y., Xiong, R., He, H., Qu, X., Pecht, M.: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries. eTransportation. 1, 100004 (2019)

    Article  Google Scholar 

  7. 7.

    Tanim, T.R., Dufek, E.J., Walker, L.K., Ho, C.D., Hendricks, C.E., Christophersen, J.P.: Advanced diagnostics to evaluate heterogeneity in lithium-ion battery modules. eTransportation. 3, 100045 (2020)

    Article  Google Scholar 

  8. 8.

    Williard, N., He, W., Hendricks, C., Pecht, M.: Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability. Energies. 6, 4682–4695 (2013)

    Article  Google Scholar 

  9. 9.

    Wang, S., Sun, Y., Huang, Z., Mu, S.: Analysis of stator internal phase-to-phase short circuit in the 12-phase synchronous generator with rectifier-load system. IEEE Trans. Energy Convers. 33(1), 299–311 (2018)

    Article  Google Scholar 

  10. 10.

    Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., He, X.: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2017)

    Article  Google Scholar 

  11. 11.

    Finegan, D., Darcy, E., Keyser, M., et al.: Characterizing thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy Environ. Sci. 10(6), 1377–1388 (2017)

    Article  Google Scholar 

  12. 12.

    Ramadass, P., Fang, W., Zhang, Z.: Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique. J. Power Sources. 248, 769–776 (2014)

    Article  Google Scholar 

  13. 13.

    Moeini, A., Wang, S.: Fast and precise detection of internal short circuit on Li-ion battery. Paper presented at the 2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, 23-27 Sept 2018

  14. 14.

    Xia, B., Mi, C., Chen, Z., Robert, B.: Multiple cell lithium-ion battery system electric fault online diagnostics. Paper presented at the 2015 IEEE Transportation Electrification Conference and Expo, Dearborn, MI, 14-17 June 2015

  15. 15.

    Zhang, M., et al.: Battery internal short circuit detection. ECS Trans. 77, 217–223 (2017)

    Article  Google Scholar 

  16. 16.

    Kong, X., Zheng, Y., Ouyang, M., Lu, L., Li, J., Zhang, Z.: Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J. Power Sources 395, 358–368 (2018)

    Article  Google Scholar 

  17. 17.

    Kong, X., Zheng, Y., Ouyang, M., et al.: Signal synchronization for massive data storage in modular battery management system with controller area network. Appl. Energy 197, 52–62 (2017)

    Article  Google Scholar 

  18. 18.

    Ouyang, M., Zhang, M., Feng, X., et al.: Internal short circuit detection for battery pack using equivalent parameter and consistency method. J. Power Sources 294, 272–283 (2015)

    Article  Google Scholar 

  19. 19.

    Gao, W., Zheng, Y., Ouyang, M., Li, J., Lai, X., Hu, X.: Micro-short circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model. IEEE Trans. Ind. Electron. 66(3), 2132–2142 (2018)

    Article  Google Scholar 

  20. 20.

    Zhang, Z., Kong, X., Zheng, Y., Zhou, L., Lai, X.: Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters. Energy. 166, 1013–1024 (2019)

    Article  Google Scholar 

  21. 21.

    Feng, X., Pan, Y., He, X., Wang, L., Ouyang, M.: Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J. Energy Storage. 18, 26–39 (2018)

    Article  Google Scholar 

  22. 22.

    Feng, X., Weng, C., Ouyang, M., Sun, J.: Online internal short circuit detection for a large format lithium ion battery. Appl. Energy 161, 168–180 (2016)

    Article  Google Scholar 

  23. 23.

    Seo, M., Park, M., Song, Y., Kim, S. W.: Model-based internal short circuit detection of lithium-ion batteries using standard charge profiles. Paper presented at the 4th International Conference on Smart and Sustainable Technologies, Split, Croatia, 18-21 June 2019

  24. 24.

    Chen, Z., Xiong, R., Tian, J., Shang, X., Lu, J.: Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles. Appl. Energy 184, 365–374 (2016)

    Article  Google Scholar 

  25. 25.

    Kim, T., Makwana, D., Adhikaree, A., Vagdoda, J., Lee, Y.: Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems. Energies 11(1), 125 (2018)

    Article  Google Scholar 

  26. 26.

    Hu, X., Li, S., Peng, H.: A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 198, 359–367 (2012)

    Article  Google Scholar 

  27. 27.

    Plett, G.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 1. Background. J. Power Sources. 134, 252–261 (2004)

    Article  Google Scholar 

  28. 28.

    Wei, Z., Dong, G., Zhang, X., Pou, J., Quan, Z., He, H.: Noise-immune model identification and state of charge estimation for lithium-ion battery using bilinear parameterization. IEEE Trans. Ind, Electron (2020)

    Google Scholar 

  29. 29.

    Wei, Z., Zhao, J., Xiong, R., Dong, G., Pou, J., Tseng, K.J.: Online estimation of power capacity with noise effect attenuation for lithium-ion battery. IEEE Trans. Ind. Electron. 66, 5724–5735 (2019)

    Article  Google Scholar 

  30. 30.

    Wei, Z., Zhao, D., He, H., Cao, W., Dong, G.: A noise-tolerant model parameterization method for lithium-ion battery management system. Appl. Energy 268, 114932 (2020)

    Article  Google Scholar 

  31. 31.

    Liu, L., Feng, X., Zhang, M., et al.: Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Appl. Energy 259, 114143 (2019)

    Article  Google Scholar 

Download references


This work is supported by the National Key R&D Program of China (No. 2017YFB0103802).

Author information



Corresponding author

Correspondence to Zhongbao Wei.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wei, Z. & He, H. An Online Adaptive Internal Short Circuit Detection Method of Lithium-Ion Battery. Automot. Innov. (2021).

Download citation


  • Lithium-ion battery
  • Internal short circuit
  • Recursive least squares
  • Extended Kalman filter