Skip to main content
Log in

Prediction of the Elastic Properties of a Plain Woven Carbon Fiber Reinforced Composite with Internal Geometric Variability

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

A statistical analysis of the yarn parameters of a plain woven carbon fiber reinforced polymer composite was conducted using X-ray micro-computed tomography data. An algorithm based on the correlated Gaussian random sequence was proposed to construct statistically equivalent yarns, which were introduced into a numerical multiscale model. A representative volume element was created to evaluate the macroscopic elastic properties of the composite. The predicted elastic constants showed a good agreement with experimental data obtained from tensile, compressive, and shear tests. This showed the importance of considering internal geometric variability for obtaining accurate simulation results. Finally, the performance of an electric vehicle back door made of the composite material was calculated by finite element analysis. The weight of the back door system was reduced by 47.45%, and performance results showed an excellent prospect of using lightweight composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Micro-CT:

Micro-computed tomography

CGRS:

Correlated Gaussian random sequence

RVE:

Representative volume element

CFRP:

Carbon fiber reinforced polymer

VIP:

Vacuum infusion process

A :

Area

AR:

Aspect ratio

PBC:

Periodic boundary conditions

SMC:

Sheet molding compound

UMAT:

User-defined material

CAD:

Computer aided design

CAE:

Computer aided engineering

References

  1. Lee, J.M., Lee, K.H., Kim, B.M., et al.: Design of roof panel with required bending stiffness using CFRP laminates. Int. J. Precis. Eng. Manuf. 17(4), 479–485 (2016)

    Article  Google Scholar 

  2. Sequeira, G.J., Lugner, R., Steinhauser, D., et al.: Investigation of intelligent features for CFRP structure in automotive safety systems. In: 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, pp. 18–24 (2017)

  3. Fuchs, E., Field, F., Roth, R., et al.: Strategic materials selection in the automobile body: economic opportunities for polymer composite design. Compos. Sci. Technol. 68(9), 1989–2002 (2008)

    Article  Google Scholar 

  4. Liu, Q., Lin, Y., Zong, Z., et al.: Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 97, 231–238 (2013)

    Article  Google Scholar 

  5. Obert, E., Daghia, F., Ladevèze, P., et al.: Micro and meso modeling of woven composites: transverse cracking kinetics and homogenization. Compos. Struct. 117, 212–221 (2014)

    Article  Google Scholar 

  6. Gao, J., Liang, B., Zhang, W., et al.: Multiscale modeling of carbon fiber reinforced polymer (CFRP) for integrated computational materials engineering process. In: Purdue University, Proceedings of the American Society for Composites—Thirty-second Technical Conference, Indiana, USA (2017)

  7. Mesogitis, T.S., Skordos, A.A., Long, A.C.: Uncertainty in the manufacturing of fibrous thermosetting composites: a review. Compos. Part A Appl. Sci. Manuf. 57, 67–75 (2014)

    Article  Google Scholar 

  8. Komeili, M., Milani, A.S.: The effect of meso-level uncertainties on the mechanical response of woven fabric composites under axial loading. Comput. Struct. 90, 163–171 (2012)

    Article  Google Scholar 

  9. Zhou, X.Y., Gosling, P.D.: Influence of stochastic variations in manufacturing defects on the mechanical performance of textile composites. Compos. Struct. 194, 226–239 (2018)

    Article  Google Scholar 

  10. Lee, S.-K., Byun, J.-H., Hong, S.H.: Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites. Mater. Sci. Eng. A 347(1), 346–358 (2003)

    Article  Google Scholar 

  11. Endruweit, A., Long, A.C., Robitaille, F., et al.: Influence of stochastic fibre angle variations on the permeability of bi-directional textile fabrics. Compos. Part A Appl. Sci. Manuf. 37(1), 122–132 (2006)

    Article  Google Scholar 

  12. De Carvalho, N.V., Pinho, S.T., Robinson, P.: An experimental study of failure initiation and propagation in 2D woven composites under compression. Compos. Sci. Technol. 71(10), 1316–1325 (2011)

    Article  Google Scholar 

  13. Goldsmith, M.B., Sankar, B.V., Haftka, R.T., et al.: Effects of microstructural variability on thermo-mechanical properties of a woven ceramic matrix composite. J. Compos. Mater. 49(3), 335–350 (2015)

    Article  Google Scholar 

  14. Olave, M., Vanaerschot, A., Lomov, S.V., et al.: Internal geometry variability of two woven composites and related variability of the stiffness. Polym. Compos. 33(8), 1335–1350 (2012)

    Article  Google Scholar 

  15. Desplentere, F., Lomov, S.V., Woerdeman, D.L., et al.: Micro-CT characterization of variability in 3D textile architecture. Compos. Sci. Technol. 65(13), 1920–1930 (2005)

    Article  Google Scholar 

  16. Barbero, E.J., Trovillion, J., Mayugo, J.A., et al.: Finite element modeling of plain weave fabrics from photomicrograph measurements. Compos. Struct. 73(1), 41–52 (2006)

    Article  Google Scholar 

  17. Bale, H., Blacklock, M., Begley, M.R., et al.: Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography. J. Am. Ceram. Soc. 95(1), 392–402 (2012)

    Article  Google Scholar 

  18. Vanaerschot, A., Cox, B.N., Lomov, S.V., et al.: Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography. Compos. Part A Appl. Sci. Manuf. 44, 122–131 (2013)

    Article  Google Scholar 

  19. Blacklock, M., Bale, H., Begley, M., et al.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary model. J. Mech. Phys. Solids 60(3), 451–470 (2012)

    Article  MATH  Google Scholar 

  20. Rinaldi, R.G., Blacklock, M., Bale, H., et al.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations. J. Mech. Phys. Solids 60(8), 1561–1581 (2012)

    Article  MATH  Google Scholar 

  21. Stock, S.R.: Recent advances in X-ray microtomography applied to materials. Int. Mater. Rev. 53(3), 129–181 (2013)

    Article  Google Scholar 

  22. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11372181, 11772191, 51705312) and the China Postdoctoral Science Foundation (Grant No. 2017M61156). The authors acknowledge the support provided by Shanghai Jiao Tong University to Prof. Wei Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhu, P., Liu, Z. et al. Prediction of the Elastic Properties of a Plain Woven Carbon Fiber Reinforced Composite with Internal Geometric Variability. Automot. Innov. 1, 147–157 (2018). https://doi.org/10.1007/s42154-018-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-018-0015-y

Keywords

Navigation