Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons


Core-shell structured polyaniline (PANI) nanocomposites with tunable magnetoresistance (MR) were obtained through the facial surface-initiated polymerization method with assistance of zero-, one-, and two-dimensional nanocarbons (carbon black, carbon fiber, carbon tube, and graphene). The improved dielectric properties and typical semiconducting behavior were observed in the PANI nanocomposites. And the quasi 3D electron conduction mechanism was observed in all the samples through Mott variable range hopping model, indicating that dimension of the nanocarbons does not affect the charge transport mechanism. Meanwhile, positive MR was observed in all the samples, and the MR value can be controlled by nanocarbons. When nanocarbon loading is 10.0 wt%, MR of graphene/PANI, carbon fiber/PANI, carbon black/PANI, and carbon tube/PANI were 15.6%, 14.7%, 9.5%, and 1.5%, respectively. The positive MR phenomenon was analyzed by the wave functional shrinkage model. The magnetic field and nanocarbons’ effects on the localization length, density of state at the Fermi level, average hopping length, and hopping energy were systematically studied. This work provides the guideline for the fabrication of tunable magnetic sensor or information storage device.

Graphical abstract

Tunable magnetoresistance was reported in the polyaniline nanocomposites with zero-, one-, and two-dimensional nanocarbons as fillers.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Gu H, Zhang X, Wei H, Huang Y, Wei S, Guo Z (2013) An overview of the magnetoresistance phenomenon in molecular systems. Chem Soc Rev 42(13):5907–5943

    CAS  Google Scholar 

  2. 2.

    Ney A, Pampuch C, Koch R, Ploog KH (2003) Programmable computing with a single magnetoresistive element. Nature 425(6957):485–487

    CAS  Google Scholar 

  3. 3.

    Moodera JS, Leclair P (2003) Spin electronics: a quantum leap. Nat Mater 2(11):707–708

    CAS  Google Scholar 

  4. 4.

    Ikeda S, Hayakawa J, Lee YM et al (2007) Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans Electron Devices 54(5):991–1002

    CAS  Google Scholar 

  5. 5.

    Wang C, Wu Y, Li Y et al (2017) Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polymer Adv Tech 29:668

    Google Scholar 

  6. 6.

    Huang Y, Luo Y, Liu H, Lu X, Zhao J, Lei Y (2020) A subcutaneously injected SERS nanosensor enabled long-term in vivo glucose tracking. Eng Sci. https://doi.org/10.30919/es8d1161

    Article  Google Scholar 

  7. 7.

    Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46(5):1510–1525

    CAS  Google Scholar 

  8. 8.

    Lyu L, Liu J, Liu H et al (2018) An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng Sci 2:26–42

    Google Scholar 

  9. 9.

    Guo J, Long J, Ding D et al (2016) Significantly enhanced mechanical and electrical properties of epoxy nanocomposites reinforced with low loading of polyaniline nanoparticles. RSC Adv 6(25):21187–21198

    CAS  Google Scholar 

  10. 10.

    Elayappan V, Murugadoss V, Fei Z, Dyson P, Angaiah S (2020) Influence of polypyrrole incorporated electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous composite membrane electrolyte on the photovoltaic performance of dye sensitized solar cell. Eng Sci 10:78–84

    CAS  Google Scholar 

  11. 11.

    Shi L, Song G, Li P, Li X, Pan D, Huang Y, Ma L, Guo Z (2021) Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole. Compos Sci Technol 201:108522

    Google Scholar 

  12. 12.

    Guo J, Song H, Liu H et al (2017) Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J Mater Chem C 5(22):5334

    CAS  Google Scholar 

  13. 13.

    Wei H, Wang Y, Guo J et al (2015) Electropolymerized polypyrrole nanocoatings on carbon paper for electrochemical energy storage. ChemElectroChem 2(1):119–126

    CAS  Google Scholar 

  14. 14.

    Qiu B, Guo J, Wang Y et al (2015) Dielectric properties and magnetoresistance behavior of polyaniline coated carbon fabrics. J Mater Chem C 3(16):3989–3998

    CAS  Google Scholar 

  15. 15.

    Zhou Y, Wu S, Long Y et al (2020) Recent advances in thermal interface materials. ES Mater Manufact 7:4–24

    CAS  Google Scholar 

  16. 16.

    Gu H, Zhang H, Gao C, Liang C, Gu J, Guo Z (2018) New functions of polyaniline. ES Mater Manufact 1:3–12

    Google Scholar 

  17. 17.

    Dashairya L, Sahu A, Saha P (2019) Stearic acid treated polypyrrole-encapsulated melamine formaldehyde superhydrophobic sponge for oil recovery. Adv Comp hybrid Mater 2:70–82

    CAS  Google Scholar 

  18. 18.

    Sun Z, Zhang L, Dang F et al (2017) Experimental and simulation understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19(24):3288–3298

    CAS  Google Scholar 

  19. 19.

    Wei H, Gu H, Guo J et al (2018) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater 1:127–134

    CAS  Google Scholar 

  20. 20.

    Guo J, Zhang X, Gu H et al (2014) Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent. Rsc Adv 4(69):36560–36572

    CAS  Google Scholar 

  21. 21.

    Lv X, Tang Y, Tian Q, Wang Y, Ding T (2020) Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos Sci Technol 200:108410

    Google Scholar 

  22. 22.

    Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52(23):7718–7728

    CAS  Google Scholar 

  23. 23.

    Romero M, Faccio R, Pardo H et al (2015) Effect of manganite nanoparticles addition in the low field magnetoresistance of polyaniline. J Mater Chem C 3(46):12040

    CAS  Google Scholar 

  24. 24.

    Prabhakaran T, Hemalatha J (2012) Negative giant magnetoresistance effect in single layered superparamagnetic polymer nanocomposite structures of poly(vinyl alcohol)–polyaniline/bismuth ferrite. Smart Mater Struct 21(8):85012–85020

    Google Scholar 

  25. 25.

    Gu H, Guo J, Sadu R et al (2013) Separating positive and negative magnetoresistance for polyaniline-silicon nanocomposites in variable range hopping regime. Appl Phys Lett 102(21):212403

    Google Scholar 

  26. 26.

    Gu H, Guo J, He Q, Jiang Y, Huang Y, Haldolaarachige N et al (2014) Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6:181–189

    CAS  Google Scholar 

  27. 27.

    Parant H et al (2017) Flowing suspensions of carbon black with high electronic conductivity for flow applications: comparison between carbons black and exhibition of specific aggregation of carbon particles. Carbon 119:10–20

    CAS  Google Scholar 

  28. 28.

    Wu Z, Li L, Guo N, Yang R, Jiang D, Zhang M, Zhang M, Huang Y, Guo Z (2019) Effect of a vinyl ester-carbon nanotubes sizing agent on interfacial properties of carbon fibers reinforced unsaturated polyester composites. ES Mater Manuf 6:38–48

    Google Scholar 

  29. 29.

    Feng P, Ma L, Wu G, Li X, Zhao M, Shi L, Wang M, Wang X, Song G (2020) Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbon fiber/resin composites. Compos Sci Technol 200:108336

    CAS  Google Scholar 

  30. 30.

    Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Engi Sci 12:13–22

    CAS  Google Scholar 

  31. 31.

    Su Y, Han G, Kong Z, Nantung T, Lu N (2020) Embeddable piezoelectric sensors for strength gain monitoring of cementitious materials: the influence of coating materials. Eng Sci 11:66–75

    CAS  Google Scholar 

  32. 32.

    Lin J, Cai X, Liu Z, Liu N, Xie M, Zhou B, Wang H, Guo Z (2020) Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie-Baxter wetting state. Adv Funct Mater 30:2000398

    CAS  Google Scholar 

  33. 33.

    Li Y, Zhu J, Wei S, Ryu J, Wang Q, Sun L, Guo Z (2011) Poly(propylene) nanocomposites containing various carbon nanostructures. Macromol Chem Phys 212(22):2429–2438

    CAS  Google Scholar 

  34. 34.

    Zhu J, Zhang X, Haldolaarachchige N, Wang Q, Luo Z, Ryu J et al (2012) Polypyrrole metacomposites with different carbon nanostructures. J Mater Chem 22:4996–5005

    CAS  Google Scholar 

  35. 35.

    Guo J, Guan L, Wei H, Khan MA, Zhang X, Li B et al (2016) Enhanced negative magnetoresistance with high sensitivity of polyaniline interfaced with nanotitania. J Electrochem Soc 163(8):H664–H671

    CAS  Google Scholar 

  36. 36.

    Wei H, Gu H, Guo J, Wei S, Guo Z (2013) Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J Electrochem Soc 160(7):G3038–G3045

    CAS  Google Scholar 

  37. 37.

    Gu H, Guo J, Zhang X, He Q, Huang Y, Colorado HA et al (2013) Giant magnetoresistive phosphoric acid doped polyaniline-silica nanocomposites. J Phys Chem C 117(12):6426–6436

    CAS  Google Scholar 

  38. 38.

    Gu H, Guo J, Wei H, Huang Y, Zhao C, Li Y et al (2013) Giant magnetoresistance in non-magnetic phosphoric acid doped polyaniline silicon nanocomposites with higher magnetic field sensing sensitivity. Phys Chem Chem Phys 15(26):10866–10875

    CAS  Google Scholar 

  39. 39.

    Huang H, Han L, Wang L, Yang Z, Zhu F, Xu M (2020) Tunable thermal-response shape memory bio-polymer hydrogels as body motion sensors. Eng Sci 9:60–67

    CAS  Google Scholar 

  40. 40.

    Gu H, Wei H, Guo J, Haldolaarachige N, Guo Z (2013) Hexavalent chromium synthesized polyaniline nanostructures: magnetoresistance and electrochemical energy storage behaviors. Polymer 54(21):5974–5985

    CAS  Google Scholar 

  41. 41.

    Liu H, Gao J, Huang W et al (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8(26):12977

    CAS  Google Scholar 

  42. 42.

    Liu H, Huang W, Ynag X et al (2016) Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites. J Mater Chem C 4:4459–4469

    CAS  Google Scholar 

  43. 43.

    Qiu L, Guo P, Zou H et al (2018) Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ 2:66–72

    Google Scholar 

  44. 44.

    Hu Y, Tang X, YangZhu, Y (2020) Near-field radiative thermal modulation by tunneling through graphene sheet. ES Energy Environ 8:48–55

    CAS  Google Scholar 

  45. 45.

    Guo CZ, Chen CG, Luo ZL (2014) A novel nitrogen-containing electrocatalyst for oxygen reduction reaction from blood protein pyrolysis. J Power Sources 245:841–845

    CAS  Google Scholar 

  46. 46.

    Guo C, Sun L, Liao W, Li Z (2016) The use of an edible mushroom-derived renewable carbon material as a highly stable electrocatalyst towards four-electron oxygen reduction. Mater 9(1):1

    Google Scholar 

  47. 47.

    Wang S, Chen ZH, Ma WJ, Ma QS (2006) Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber. Ceram Int 32(3):291–295

    CAS  Google Scholar 

  48. 48.

    Liu H, Dong M, Huang W, Gao J, Dai K, Guo J et al (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    CAS  Google Scholar 

  49. 49.

    Zhang Y, Cheng X, Jiang X, Urban JJ, Lau CH, Liu S, Shao L (2020) Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater Today 36:40–47

    CAS  Google Scholar 

  50. 50.

    Wang G, Gao Z, Wan G, Lin S, Qin Y et al (2014) High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res 7(5):704–716

    CAS  Google Scholar 

  51. 51.

    Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    CAS  Google Scholar 

  52. 52.

    Wu Q, Yang X, Wan Q, Zhao R, He J, Zhu J (2020) Layer-by-layer assembled nacre-like polyether amine/GO hierarchical structure on carbon fiber surface toward composites with excellent interfacial strength and toughness. Compos Sci Technol 198:108296

    CAS  Google Scholar 

  53. 53.

    Wang H, Hao Q, Yang X, Lu L, Wang X et al (2010) A nanostructured graphene /polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    CAS  Google Scholar 

  54. 54.

    Cochet M, Louarn G, Quillard S, Bussion JP, Lefrant S et al (2000) Theoretical and experimental vibrational study of emeraldine in the salt forms (Part II). J Raman Spectrosc 31(12):1041–1049

    CAS  Google Scholar 

  55. 55.

    Jagtap S, Kushwaha RK, Ratna D (2015) Novel green method of preparation of a poly (ethylene oxide)/graphene nanocomposite using organic salt assisted dispersion. RSC Adv 5(39):30555–30563

    CAS  Google Scholar 

  56. 56.

    Rao M, Song X, Liao H, Cairns EJ (2012) Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim Acta 65:228–233

    CAS  Google Scholar 

  57. 57.

    Zhu J, Gu H, Luo Z, Haldolaarachige N, Young DP, Wei S et al (2012) Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir 28(27):10246–10255

    CAS  Google Scholar 

  58. 58.

    Kahol PK, Kumar KKS, Geetha S, Trivedi DC (2003) Effect of dopants on electron localization length in polyaniline. Synth Met 139(2):191–200

    CAS  Google Scholar 

  59. 59.

    Gu H, Guo J, Yan X et al (2014) Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. Polymer 55(17):4405–4419

    CAS  Google Scholar 

  60. 60.

    Cheng C, Yan K, Fan R, Qian L, Zhang Z, Sun K et al (2016) Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96:678–684

    CAS  Google Scholar 

  61. 61.

    Cheng C, Fan R, Ren Y, Ding T, Qian L, Guo J et al (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787

    CAS  Google Scholar 

  62. 62.

    Sun K, Fan R, Yin Y, Guo J, Li X et al (2017) Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yttrium iron garnet nanocomposites. J Phys Chem C 121(13):7564–7571

    CAS  Google Scholar 

  63. 63.

    Gu H, Guo J, Khan MA et al (2016) Magnetoresistive polyaniline–silicon carbide metacomposites: plasma frequency determination and high magnetic field sensitivity. Phys Chem Chem Phys 18(29):19536–19543

    CAS  Google Scholar 

  64. 64.

    Friend R (2006) Materials science: polymers show they’re metal. Nature 441(7089):37

    CAS  Google Scholar 

  65. 65.

    Blakesley JC, Neher D (2011) Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Phys Rev B 84(7):9226–9231

    Google Scholar 

  66. 66.

    Sarkar A, Ghosh P, Meikap AK, Chattopadhyay SK, Chatterjee SK, Ghosh M (2004) Direct and alternate current conductivity and magnetoconductivity of oxalic acid doped polyaniline. Solid State Commun 143(6–7):358–363

    Google Scholar 

  67. 67.

    He S, Jiang X, Li S, Ran F, Long J, Shao L (2020) Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE J 66(10):16543

    Google Scholar 

  68. 68.

    Zhang L, Tang ZJ (2004) Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys Rev B 70(17):174306

    Google Scholar 

  69. 69.

    Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Mavinakuli P et al (2011) Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J Mater Chem 21(2):342–348

    CAS  Google Scholar 

  70. 70.

    Bin HU, Yue WU (2007) Tuning magnetoresistance between positive and negative values in organic semiconductors. Nature Mater 6(12):985–991

    Google Scholar 

  71. 71.

    Sheng Y, Nguyen TD, Veeraraghavan G et al (2006) Hyperfine interaction and magnetoresistance in organic semiconductors. Phys Rev B 74(4):045213–045213

    Google Scholar 

  72. 72.

    Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, Li S, Shao L (2020) A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 225:115845

    CAS  Google Scholar 

  73. 73.

    Prigodin VN, Bergeson JD, Lincoln DM, Epstein AJ (2006) Anomalous room temperature magnetoresistance in organic semiconductors. Synthetic Met 156(9–10):757–761

    CAS  Google Scholar 

  74. 74.

    Bloom FL, Wagemans W, Koopmans B (2008) Temperature dependent sign change of the organic magnetoresistance effect. J Appl Phys 103(7):07F320-07F323

    Google Scholar 

Download references


The work is supported by the Research Starting Foundation of Shaanxi University of Science and Technology, and Research Starting Foundation of University of Tennessee, the Research Foundation for Thousand Young Talent Plan of Shaanxi province of China.

Author information



Corresponding author

Correspondence to Jiang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1296 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Li, X., Liu, H. et al. Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4, 51–64 (2021). https://doi.org/10.1007/s42114-021-00211-6

Download citation


  • PANI nanocomposites
  • Magnetoresistance
  • Wave functional shrinkage model