Investigation on mechanical, wear, and machining characteristics of Al 7075/MWCNTs using the liquid state method


In the present research work, an attempt has been made to fabricate the aluminum metal matrix composite by the stir casting method. Aluminum 7075 alloy is used as a matrix which is reinforced with multi-walled carbon nanotubes (MWCNTs) with varying percentage (0 wt.%, 1.0 wt.%, 2.0wt.%, and 3.0 wt.%). Experiments were carried out to analyze microstructure, mechanical, tribological, and machining characteristics such as microhardness, tensile strength, wear rate, coefficient of friction, material removal rate (MRR), and surface roughness (Ra). Also, the samples were studied under a scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), and X-ray diffraction analysis (XRD) to investigate the dispersion, chemical composition, and elemental analysis of multi-walled carbon nanotubes in Al 7075. The microscopic study of metal matrix composite samples shows a good dispersion of MWCNT into Al 7075. Results show that the microhardness and tensile strength increase by 6% and 25%. The wear rate and coefficient of friction of composites are decreased by 39% and 48% at a sliding speed of 3 m/s. In addition, the metal removal rate decreases by 40% and the surface roughness enhanced by 38% respectively.

Characterization of MWCNT

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Suresh S, Gowd GH, Kumar MD (2019) Mechanical properties of AA 7075/Al2O3/SiC nano-metal matrix composites by stir-casting method. J Inst Eng (India): Series D 100(1):43–53

    CAS  Google Scholar 

  2. 2.

    Prakash KS, Thankachan T, Radhakrishnan R (2017) Parametric optimization of dry sliding wear loss of copper-MWCNT composites. Trans Nonferrous Metals Soc China 27(3):627–637

    CAS  Article  Google Scholar 

  3. 3.

    McGrath LM, Parnas RS, King SH, Schroeder JL, Fischer DA, Lenhart JL (2008) Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites. Polymer 49(4):999–1014

    CAS  Article  Google Scholar 

  4. 4.

    Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets-dispersion and synergy effects. Carbon 78:268–278

    CAS  Article  Google Scholar 

  5. 5.

    Rahmanian S, Suraya AR, Shazed MA, Zahari R, Zainudin ES (2014) Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. Mat & Design 60:34–40

    CAS  Article  Google Scholar 

  6. 6.

    Li W, Dichiara A, Bai J (2013) Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227

    CAS  Article  Google Scholar 

  7. 7.

    Zhang J, Jiang D (2011) Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites. Compos Sci Technol 71(4):466–470

    CAS  Article  Google Scholar 

  8. 8.

    Zakaria MR, Akil HM, Kudus MHA, Saleh SSM (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Comp Part A: App Sci Manu 66:109–116

    CAS  Article  Google Scholar 

  9. 9.

    Puchy V, Hvizdos P, Dusza J, Kovac F, Inam F, Reece MJ (2013) Wear resistance of Al2O3-CNT ceramic nanocomposites at room and high temperatures. Ceram Int 39(5):5821–5826

    CAS  Article  Google Scholar 

  10. 10.

    Pujari S, Ramakrishna A, Padal KTB (2017) Comparison of ANN and regression analysis for predicting the water absorption behaviour of jute and banana fiber reinforced epoxy composites. Mat Today: Proc 4(2):1626–1633

    Google Scholar 

  11. 11.

    Rout AK, Satapathy A (2012) Study on mechanical and tribo performance of rice-husk filled glass-epoxy hybrid composites. Mat & Design 41:131–141

    CAS  Article  Google Scholar 

  12. 12.

    Sabarinathan C, Ali N, Muthu S (2013) Wear and friction behavior of epoxy/MWCNTs nanocomposites under dry sliding conditions. Curr Nanosci 9(6):766–772

    CAS  Article  Google Scholar 

  13. 13.

    Tian F, He CN (2011) Processing and mechanical properties of carbon nanotube-alumina hybrid reinforced high-density polyethylene composites. Mat Res Bulletin 46(7):1143–1147

    CAS  Article  Google Scholar 

  14. 14.

    Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63(14):2055–2067

    CAS  Article  Google Scholar 

  15. 15.

    Suresh S, Harinath Gowd G, Deva Kumar MLS (2019) Experimental investigation on mechanical properties of Al 7075/Al2O3/Mg NMMC’s by stir casting method. Sādhanā 44(2):51

    Article  Google Scholar 

  16. 16.

    Wetzel B, Haupert F, Friedrich K, Zhang MQ, Rong MZ (2002) Impact and wear resistance of polymer nanocomposites at low filler content. Polym Eng Sci 42(9):1919–1927

    CAS  Article  Google Scholar 

  17. 17.

    Zhang N, Yang F, Shen C, Castro J, Lee LJ (2013) Particle erosion on carbon nanofiber paper coated carbon fiber/epoxy composites. Comp Part B: Eng 54:209–214

    Article  Google Scholar 

  18. 18.

    Ahmad I, Kennedy A, Zhu YQ (2010) Wear-resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 269(1-2):71–78

    CAS  Article  Google Scholar 

  19. 19.

    Vinod B, Ramanathan S, Anandajothi M (2018) Effect of organic and inorganic reinforcement on tribological behaviour of aluminium A356 matrix hybrid composite. J Bio-Tribo-Corrosion 4(3):45

    Article  Google Scholar 

  20. 20.

    Brown GM, Ellyin F (2011) Mechanical properties and multiscale characterization of nanofiber-alumina/epoxy nanocomposites. J App Polymer Sci 119(3):1459–1468

    CAS  Article  Google Scholar 

  21. 21.

    Chen W-J, Li Y-L, Chiang C-L, Kuan C-F, Kuan H-C, Lin T-T, Yip M-C (2010) Preparation and characterization of carbon nanotubes/epoxy resin nano-prepreg for nanocomposites. J Phys Chem Solids 71(4):431–435

    CAS  Article  Google Scholar 

  22. 22.

    Vinod B, Ramanathan S, Anandajothi M (2019) A novel approach for utilization of agro-industrial waste materials as reinforcement with Al-7Si-0.3 Mg matrix hybrid composite on tribological behaviour. SN App Sci 1(1):62

    Article  Google Scholar 

  23. 23.

    Rout AK, Satapathy A (2012) Study on mechanical and trio performance of rice-husk filled glass-epoxy hybrid composites. Mat & Design 41:131–141

    CAS  Article  Google Scholar 

  24. 24.

    Yu C-R, Wu D-M, Liu Y, Qiao H, Yu Z-Z, Dasari A, Du X-S, Mai Y-W (2011) Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos Sci Technol 71(15):1706–1712

    CAS  Article  Google Scholar 

  25. 25.

    Yu J-G, Jiang X-Y, D-m Z, Chen X-Q, Jiao F-P, Peng Z-G (2013) Preparation and characterization of diiodocarbene functionalized multi-walled carbon nanotubes. Curr Nanosci 9(1):89–92

    CAS  Google Scholar 

  26. 26.

    Li W, Dichiara A, Zha J, Su Z, Bai J (2014) On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT-Al2O3 hybrids. Compos Sci Technol 103:36–43

    CAS  Article  Google Scholar 

  27. 27.

    Suresh S, Harinath Gowd G, Deva Kumar MLS (2019) Mechanical and wear characterization of Al/nano-SiC NMMCs by liquid state process. J Bio-Tribo-Corrosion 5(2):3

    Article  Google Scholar 

Download references


The corresponding author wishes to thank the Department of Mechanical Engineering, Siddhartha Institute of Science and Technology (Autonomous) Puttur, India, for providing facilities and necessary support in conducting experiments and discussions in the research work.

Author information



Corresponding author

Correspondence to S Suresh.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Sudhakara, D. & Vinod, B. Investigation on mechanical, wear, and machining characteristics of Al 7075/MWCNTs using the liquid state method. Adv Compos Hybrid Mater 3, 243–254 (2020).

Download citation


  • Al 7075
  • SEM
  • EDX
  • XRD