Skip to main content

Advertisement

Log in

Combustion synthesis of N-doped three-dimensional graphene networks using graphene oxide–nitrocellulose composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

We demonstrate a novel method to prepare high-quality and uniform nitrogen-doped, three-dimensional, graphene networks through combustion of graphene oxide (GO)–nitrocellulose composites. The N-doped 3D graphene networks have tunable porous morphology and the pore size can be controlled by adjusting the concentration of GO in the nitrocellulose matrix. This new method is a simple method to obtain nitrogen-doped graphene networks and has potential applications in energy storage and conversion, catalysis, and sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699):43–50

    Article  Google Scholar 

  2. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    Article  Google Scholar 

  3. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

  4. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1520–1534

    Article  Google Scholar 

  5. Pumera M (2011) Graphene in biosensing. Mater Today 14(7–8):308–315

    Article  Google Scholar 

  6. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  Google Scholar 

  7. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  Google Scholar 

  8. Zhang X, Ji X, Su R, Weeks BL, Zhang Z, Deng S (2013) Aerobic oxidation of 9H-Fluorenes to 9-Fluorenones using mono-/multilayer graphene-supported alkaline catalyst. ChemPlusChem 78(7):703–711

    Article  Google Scholar 

  9. Zhang Y, Wang S, Li L, Zhang K, Qiu J, Davis M, Hope-Weeks LJ (2012) Tuning electrical conductivity and surface area of chemically-exfoliated graphene through nanocrystal functionalization. Mater Chem Phys 135(2–3):1057–1063

    Article  Google Scholar 

  10. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279

    Article  Google Scholar 

  11. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496

    Article  Google Scholar 

  12. Li L, Zhang X, Qiu J, Weeks BL, Wang S (2013) Reduced graphene oxide-linked stacked polymer forests for high energy-density supercapacitor. Nano Energy 2(5):628–635

    Article  Google Scholar 

  13. Maharubin S, Zhang X, Zhu F, Zhang H-C, Zhang G, Zhang Y (2016) Synthesis and applications of semiconducting graphene. J Nanomater 2016:1–19

    Article  Google Scholar 

  14. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  Google Scholar 

  15. Zhu S, Zhou J, Guan Y, Cai W, Zhao Y, Zhu Y, Zhu L, Zhu Y, Qian Y (2018) Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries. Small 14(47):e1802457

    Article  Google Scholar 

  16. Ji X, Zhang X, Zhang X (2015) Three-dimensional graphene-based nanomaterials as electrocatalysts for oxygen reduction reaction. J Nanomater 2015:1–9

    Google Scholar 

  17. Qin Y, Yuan J, Li J, Chen D, Kong Y, Chu F, Tao Y, Liu M (2015) Crosslinking graphene oxide into robust 3D porous N-doped graphene. Adv Mater 27(35):5171–5175

    Article  Google Scholar 

  18. Hu G, Xu C, Sun Z, Wang S, Cheng HM, Li F, Ren W (2016) 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv Mater 28(8):1603–1609

    Article  Google Scholar 

  19. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4(18):5549

    Article  Google Scholar 

  20. Zhu C, Han TY, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962

    Article  Google Scholar 

  21. Cai W, Zhou J, Li G, Zhang K, Liu X, Wang C, Zhou H, Zhu Y, Qian Y (2016) B,N-Co-doped graphene supported sulfur for superior stable Li-S half cell and Ge-S full battery. ACS Appl Mater Interfaces 8(41):27679–27687

    Article  Google Scholar 

  22. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294

    Article  Google Scholar 

  23. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  Google Scholar 

  24. Qu L, Liu Y, Baek J, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  Google Scholar 

  25. Usachov D, Vilkov O, Grüneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11(12):5401–5407

    Article  Google Scholar 

  26. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794

    Article  Google Scholar 

  27. Chang DW, Lee EK, Park EY, Yu H, Choi H-J, Jeon I-Y, Sohn G-J, Shin D, Park N, Oh JH, Dai L, Baek J-B (2013) Nitrogen-doped graphene nanoplatelets from simple solution edge-functionalization for n-type field-effect transistors. J Am Chem Soc 135(24):8981–8988

    Article  Google Scholar 

  28. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771

    Article  Google Scholar 

  29. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193

    Article  Google Scholar 

  30. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  Google Scholar 

  31. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23(8):1020–1024

    Article  Google Scholar 

  32. Jin Z, Yao J, Kittrell C, Tour J (2011) Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5):4112–4117

    Article  Google Scholar 

  33. Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2(10):4498

    Article  Google Scholar 

  34. Lin Y-C, Lin C-Y, Chiu P-W (2010) Controllable graphene N-doping with ammonia plasma. Appl Phys Lett 96(13):133110

    Article  Google Scholar 

  35. Moon J, An J, Sim U, Cho S-P, Kang JH, Chung C, Seo J-H, Lee J, Nam KT, Hong BH (2014) One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Adv Mater 26(21):3501–3505

    Article  Google Scholar 

  36. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477

    Article  Google Scholar 

  37. Li X, Wang H, Robinson JT, Sanchez H, Georgi Diankov H, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  Google Scholar 

  38. Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon S-H (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26(20):16096–16102

    Article  Google Scholar 

  39. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem 124:11533–11537

    Article  Google Scholar 

  40. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  41. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–424

    Article  Google Scholar 

  42. Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4(6):3129–3133

    Article  Google Scholar 

  43. Jung I, Young Jang H, Park S (2013) Direct growth of graphene nanomesh using a Au nano-network as a metal catalyst via chemical vapor deposition. Appl Phys Lett 103(2):023105

    Article  Google Scholar 

  44. Yi J, Lee DH, Lee WW, Park WI (2013) Direct synthesis of graphene meshes and semipermanent electrical doping. J Phys Chem Lett 4(13):2099–2104

    Article  Google Scholar 

  45. Pettes MT, Ji H, Ruoff RS, Shi L (2012) Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett 12(6):2959–2964

    Article  Google Scholar 

  46. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342

    Article  Google Scholar 

  47. Lu Y-F, Lo S-T, Lin J-C, Zhang W, Lu J, Liu F, Tseng C-M, Lee Y-H, Liang C-T, Li L-J (2013) Nitrogen-doped graphene sheets grown by chemical vapor deposition:synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7(8):6522–6532

    Article  Google Scholar 

  48. Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent Electrocatalysis. ACS Nano 5(6):4350–4358

    Article  Google Scholar 

  49. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12(3–4):44–50

    Article  Google Scholar 

  50. Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31(2):1789–1795

    Article  Google Scholar 

  51. Salunkhe AB, Khot VM, Phadatare MR, Pawar SH (2012) Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio. J Alloys Compd 514:91–96

    Article  Google Scholar 

  52. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H (2009) Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater 162(2–3):1141–1144

    Article  Google Scholar 

  53. Wei W, Jiang X, Lu L, Yang X, Wang X (2009) Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant. J Hazard Mater 168(2–3):838–842

    Article  Google Scholar 

  54. Zhang X, Weeks BL (2014) Preparation of sub-micron nitrocellulose particles for improved combustion behavior. J Hazard Mater 268:224–228

    Article  Google Scholar 

  55. Zhang X, Hikal WM, Zhang Y, Bhattacharia SK, Li L, Panditrao S, Wang S, Weeks BL (2013) Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl Phys Lett 102(14):141905

    Article  Google Scholar 

  56. Yoshihara K, Tanaka A (2002) Interlaboratory study on the degradation of poly (vinyl chloride), nitrocellulose and poly (tetrafluoroethylene) by X-rays in XPS. Surf Interface Anal 33(3):252–258

    Article  Google Scholar 

  57. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47(1):145–152

    Article  Google Scholar 

  58. Wang Z-L, Xu D, Huang Y, Wu Z, Wang L-M, Zhang X-B (2012) Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem Commun 48(7):976

    Article  Google Scholar 

Download references

Funding

This work was supported by ONR (N00014-11-1-0424) and the U.S. Department of Homeland Security under Award Number 2008-ST-061-ED0001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Brandon L. Weeks.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ziemer, K.S. & Weeks, B.L. Combustion synthesis of N-doped three-dimensional graphene networks using graphene oxide–nitrocellulose composites. Adv Compos Hybrid Mater 2, 492–500 (2019). https://doi.org/10.1007/s42114-019-00113-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00113-8

Keywords

Navigation