Skip to main content

Advertisement

Log in

Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Development of biomass-based and some other sustainable biomedical materials is a key subject and effective approach to biomass high-value utilization. In this work, we used cellulose resources to develop a photoresponse hydrogel (PR-gel) by integrating 4arm-PEG and azobenzene into cellulose nanofibrils (CNFs). This novel PR-gel exhibited good mechanical strength (storage modulus over 103 Pa), structure stability, reversible recoverability between sustained step strain of 1% and 1000%, and excellent biocompatibility. Under UV irradiation (λ = 365 nm, 10 mW/cm2, 10 min), the azobenzene cross-linker in PR-gel as photoswitch can cause the trans-cis isomerism and a softening effect of the hydrogel, thus realized the photo-controlled release of bovine serum albumin (BSA) (5-fold higher release rate under UV light irradiation). This work provided a new approach to design cellulose-based photoresponsive hydrogels. It is also can expand the application of cellulose-based hydrogels and some other sustainable materials in the biomedical field.

Cellulose nanofibrils-4arm-polyethylene glycol-azobenzene (PR-gel) exhibited good mechanical strength, reversible recoverability, excellent biocompatibility, and reversible photoresponse for protein release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531

    Article  Google Scholar 

  2. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  Google Scholar 

  3. Chen H, Nair SS, Chauhan P, Yan N (2019) Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. Chem Eng J 360:393–401. https://doi.org/10.1016/j.cej.2018.11.222

    Article  Google Scholar 

  4. Lu J, Zhu W, Dai L, Si C, Ni Y (2019) Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr Polym 215:289–295. https://doi.org/10.1016/j.carbpol.2019.03.100

    Article  Google Scholar 

  5. Jorfi M, Foster EJ (2014) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14). https://doi.org/10.1002/app.41719

  6. Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316. https://doi.org/10.1016/j.carbpol.2016.12.050

    Article  Google Scholar 

  7. G Sudesh Kumar DCN (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89(8):1915–1925. https://doi.org/10.1021/cr00098a012

    Article  Google Scholar 

  8. Kudaibergenov S, Koetz J, Nuraje N (2018) Nanostructured hydrophobic polyampholytes: self-assembly, stimuli-sensitivity, and application. Adv Compos Hybrid Mater 1(4):649–684. https://doi.org/10.1007/s42114-018-0059-9

    Article  Google Scholar 

  9. Zoppe JO, Youssef H, Rojas OJ, Venditti RA, Leena-Sisko J, Kirill E, Monika O, Janne L (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10):2683–2691

    Article  Google Scholar 

  10. Rastogi SK, Anderson HE, Lamas J, Barret S, Cantu T, Zauscher S, Brittain WJ, Betancourt T (2018) Enhanced release of molecules upon ultraviolet (UV) light irradiation from photoresponsive hydrogels prepared from bifunctional azobenzene and four-arm poly(ethylene glycol). ACS Appl Mater Interfaces 10(36):30071–30080. https://doi.org/10.1021/acsami.6b16183

    Article  Google Scholar 

  11. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340(15):2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  Google Scholar 

  12. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  13. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2(4):772–780. https://doi.org/10.1021/sc400445t

    Article  Google Scholar 

  14. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels,3,1(2010-05-24) 3(1):10–10

    Article  Google Scholar 

  15. Rosales AM, Mabry KM, Nehls EM, Anseth KS (2015) Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16(3):798–806. https://doi.org/10.1021/bm501710e

    Article  Google Scholar 

  16. Forber CL, Kelusky EC, Bunce NJ, Zerner MC (1985) Electronic spectra of cis- and trans-azobenzenes: consequences of ortho substitution. J Am Chem Soc 107(21):5884–5890. https://doi.org/10.1021/ja00307a009

    Article  Google Scholar 

  17. Lee S, Oh S, Lee J, Malpani Y, Jung YS, Kang B, Lee JY, Ozasa K, Isoshima T, Lee SY, Hara M, Hashizume D, Kim JM (2013) Stimulus-responsive azobenzene supramolecules: fibers, gels, and hollow spheres. Langmuir 29(19):5869–5877. https://doi.org/10.1021/la400159m

    Article  Google Scholar 

  18. Tang Y-F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67(4):491–499. https://doi.org/10.1016/j.carbpol.2006.06.015

    Article  Google Scholar 

  19. Pal A, Basit H, Sen S, Aswal VK, Bhattacharya S (2009) Structure and properties of two component hydrogels comprising lithocholic acid and organic amines. J Mater Chem 19(25):4325. https://doi.org/10.1039/b903407b

    Article  Google Scholar 

  20. Gu H, Zhang H, Ma C, Sun H, Liu C, Dai K, Zhang J, Wei R, Ding T, Guo Z (2019) Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J Mater Chem C 7(8):2353–2360. https://doi.org/10.1039/C8TC05448G

    Article  Google Scholar 

  21. Gao F, Xu Z, Liang Q, Liu B, Li H, Wu Y, Zhang Y, Lin Z, Wu M, Ruan C, Liu W (2018) Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater 28(13):1706644. https://doi.org/10.1002/adfm.201706644

    Article  Google Scholar 

  22. Zhang Y, Carbonell RG, Rojas OJ (2013) Bioactive cellulose nanofibrils for specific human IgG binding. Biomacromolecules 14(12):4161–4168. https://doi.org/10.1021/bm4007979

    Article  Google Scholar 

  23. Liu Y, Huang H, Huo P, Gu J (2017) Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation. Carbohydr Polym 165:266–275. https://doi.org/10.1016/j.carbpol.2017.02.052

    Article  Google Scholar 

  24. Zhang J, Hu T, Liu Y, Ma Y, Dong J, Xu L, Zheng Y, Yang H, Wang G (2012) Photoswitched protein adsorption on electrostatically self-assembled azobenzene films. ChemPhysChem 13(11):2671–2675. https://doi.org/10.1002/cphc.201200231

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2017-19) and Natural Science Foundation of Tianjin (17JCQNJC05200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Dai or Chuanling Si.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Lu, J., Kong, F. et al. Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2, 462–470 (2019). https://doi.org/10.1007/s42114-019-00112-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00112-9

Keywords

Navigation