Skip to main content
Log in

Enhanced mechanical and tribological performance of PA66 nanocomposites containing 2D layered α-zirconium phosphate nanoplatelets with different sizes

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Two-dimensional layered α-zirconium phosphate (ZrP) nanoplatelets with two distinguished sizes but similar aspect ratio were directly incorporated into polyamide 66 (PA66) by simple melt processing without using any surfactants. Through the electron microscopy analysis, the large ZrP nanoplatelets with ~ 1.33 μm in size and ~ 5.8 in aspect ratio exhibit a uniform dispersion in PA66 matrices at the filler loading up to 3 wt%, while the small ZrP nanoplatelets with an average size of ~ 230 nm and aspect ratio of ~ 6.2 tend to form large-scale aggregates in PA66 even at 1 wt% loading. Tensile testing results illustrate that the large ZrP nanoplatelets exhibit a better reinforcement effect in PA66 than the small ones. With the incorporation of 3 wt% large ZrP nanoplatelets, the PA66 nanocomposites exhibit an increase of ~ 10% in tensile modulus and ~ 14% in tensile strength as compared with the pure PA66. Pin-on-disc wear tests illustrate that the nanocomposites containing large ZrP nanoplatelets have better anti-wear properties than those prepared with small ZrP nanoplatelets. In specific, the PA66 nanocomposites containing 1 wt% large ZrP nanoplatelets show a ~ 43% decrease in friction coefficient and a ~ 59% reduction in the wear rate under the test condition of 40 N in load and 0.6 m/s in velocity. The mechanisms that are responsible for the mechanical and tribological enhancements in the PA66/ZrP nanocomposites have also been discussed.

2D layered α-zirconium phosphate (ZrP) nanoplatelets with large size can effectively enhance mechanical and tribological properties of PA66 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Domingo R, de Agustina B, Marín M (2018) A multi-response optimization of thrust forces, torques, and the power of tapping operations by cooling air in reinforced and unreinforced polyamide PA66. Sustainability 10(3):889. https://doi.org/10.3390/su10030889

    Article  Google Scholar 

  2. Frihi D, Layachi A, Gherib S, Stoclet G, Masenelli-Varlot K, Satha H, Seguela R (2016) Crystallization of glass-fiber-reinforced polyamide 66 composites: influence of glass-fiber content and cooling rate. Compos Sci Technol 130:70–77. https://doi.org/10.1016/j.compscitech.2016.05.007

    Article  Google Scholar 

  3. Lee SM, Shin MW, Jang H (2014) Effect of carbon-nanotube length on friction and wear of polyamide 6,6 nanocomposites. Wear 320:103–110. https://doi.org/10.1016/j.wear.2014.08.011

    Article  Google Scholar 

  4. Rolland H, Saintier N, Raphael I, Lenoir N, King A, Robert G (2018) Fatigue damage mechanisms of short fiber reinforced PA66 as observed by in-situ synchrotron X-ray microtomography. Compos Part B 143:217–229. https://doi.org/10.1016/j.compositesb.2017.12.051

    Article  Google Scholar 

  5. Chen J, Xu H, Liu C, Mi L, Shen C (2018) The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites. Compos Sci Technol 168:20–27. https://doi.org/10.1016/j.compscitech.2018.09.007

    Article  Google Scholar 

  6. Huang X, Li B, Shi B, Li L (2008) Investigation on interfacial interaction of flame retarded and glass fiber reinforced PA66 composites by IGC/DSC/SEM. Polymer 49(4):1049–1055. https://doi.org/10.1016/j.polymer.2007.12.037

    Article  Google Scholar 

  7. Bellenger V, Tcharkhtchi A, Castaing P (2006) Thermal and mechanical fatigue of a PA66/glass fibers composite material. Int J Fatigue 28(10):1348–1352. https://doi.org/10.1016/j.ijfatigue.2006.02.031

    Article  Google Scholar 

  8. Chen T, Liu H, Wang X, Zhang H, Zhang X (2018) Properties and fabrication of PA66/surface-modified multi-walled nanotubes composite fibers by ball milling and melt-spinning. Polymers 10(5):547. https://doi.org/10.3390/polym10050547

    Article  Google Scholar 

  9. Chang Q, Zhao H, He R (2017) The addition of clay on the mechanical properties of surface-treated CF-filled PA66 composites. Surf Interface Anal. https://doi.org/10.1002/sia.6230

  10. Kim J, Oh J, Lee KY, Jung I, Park M (2017) Dispersion of graphene-based nanocarbon fillers in polyamide 66 by dry processing and its effect on mechanical properties. Compos Part B 114:445–456. https://doi.org/10.1016/j.compositesb.2017.01.054

    Article  Google Scholar 

  11. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20(23):4937. https://doi.org/10.1039/c0jm00063a

    Article  Google Scholar 

  12. Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, Ho TH, Guo Z (2009) Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer 50(17):4189–4198. https://doi.org/10.1016/j.polymer.2009.06.062

    Article  Google Scholar 

  13. Hu H, Yu S, Liu Y, Liu Y, Liu K (2008) Tribological behavior of polyamide 66-based ternary nanocomposites modified with organoclay and SEBS-g-MA. Tribol Lett 32(1):23–29. https://doi.org/10.1007/s11249-008-9356-8

    Article  Google Scholar 

  14. Guo Z, Lei K, Li Y, Ng HW, Prikhodko S, Hahn HT (2008) Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. Compos Sci Technol 68(6):1513–1520. https://doi.org/10.1016/j.compscitech.2007.10.018

    Article  Google Scholar 

  15. Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16(27):2800. https://doi.org/10.1039/b603020c

    Article  Google Scholar 

  16. Clavería I, Elduque D, Lostalé A, Fernández Á, Castell P, Javierre C (2019) Analysis of self-lubrication enhancement via PA66 strategies: texturing and nano-reinforcement with ZrO2 and graphene. Tribol Int 131:332–342. https://doi.org/10.1016/j.triboint.2018.10.044

    Article  Google Scholar 

  17. Demirci MT, Düzcükoğlu H (2014) Wear behaviors of polytetrafluoroethylene and glass fiber reinforced polyamide 66 journal bearings. Mater Des 57:560–567. https://doi.org/10.1016/j.matdes.2014.01.013

    Article  Google Scholar 

  18. Chen Z, Liu X, Li T, Lü R (2006) Mechanical and tribological properties of PA66/PPS blend. II. Filled with PTFE. J Appl Polym Sci 101(2):969–977. https://doi.org/10.1002/app.22061

    Article  Google Scholar 

  19. Sun H, Jiang F, Lei F, Chen L, Zhang H, Leng J, Sun D (2018) Graphite fluoride reinforced PA6 composites: crystallization and mechanical properties. Mater Today Commun 16:217–225. https://doi.org/10.1016/j.mtcomm.2018.06.007

  20. Sun X, Zhao M, Han B, Kang H, Fan Z, Liu Y, Umar A, Guo Z (2018) Frictional reduction with partially exfoliated multi-walled carbon nanotubes as water-based lubricant additives. J Nanosci Nanotechnol 18(5):3427–3432. https://doi.org/10.1166/jnn.2018.14694

    Article  Google Scholar 

  21. Han X, Yong H, Sun D (2017) Tuning tribological performance of layered zirconium phosphate nanoplatelets in oil by surface and interlayer modifications. Nanoscale Res Lett 12(1):542. https://doi.org/10.1186/s11671-017-2315-2

    Article  Google Scholar 

  22. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013. https://doi.org/10.1016/s0032-3861(03)00471-3

    Article  Google Scholar 

  23. Mu B, Wang Q, Wang T, Wang H, Jian L (2008) The friction and wear properties of clay filled PA66. Polym Eng Sci 48(1):203–209. https://doi.org/10.1002/pen.20956

    Article  Google Scholar 

  24. bin Ali A, Mohammed AS, Merah N (2018) Tribological investigations of UHMWPE nanocomposites reinforced with three different organo-modified clays. Polym Compos 39(7):2224–2231. https://doi.org/10.1002/pc.24186

    Article  Google Scholar 

  25. Dasari A, Yu Z, Mai Y, Hu G, Varlet J (2005) Clay exfoliation and organic modification on wear of nylon 6 nanocomposites processed by different routes. Compos Sci Technol 65(15–16):2314–2328. https://doi.org/10.1016/j.compscitech.2005.06.017

    Article  Google Scholar 

  26. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos A: Appl Sci Manuf 84:158–164. https://doi.org/10.1016/j.compositesa.2016.01.020

    Article  Google Scholar 

  27. Lai D, Li D, Yang J (2015) Improved mechanical properties of montmorillonite/nylon 6 nanocomposites by the modification of novolac. J Macromol Sci A 52(12):1009–1016. https://doi.org/10.1080/10601325.2015.1095604

    Article  Google Scholar 

  28. Chen Y-F, Tan Y-J, Li J, Hao Y-B, Shi Y-D, Wang M (2018) Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable poly(ε-caprolactone) for mechanical and electrically conductive enhancement. Polym Test 65:387–397. https://doi.org/10.1016/j.polymertesting.2017.12.019

    Article  Google Scholar 

  29. Gan L, Qiu F, Hao Y-B, Zhang K, Zhou Z-Y, Zeng J-B, Wang M (2016) Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. J Mater Sci 51(11):5185–5195. https://doi.org/10.1007/s10853-016-9820-z

    Article  Google Scholar 

  30. Zhang K, Peng JK, Shi YD, Chen YF, Zeng JB, Wang M (2016) Control of the crystalline morphology of poly(l-lactide) by addition of high-melting-point poly(l-lactide) and its effect on the distribution of multiwalled carbon nanotubes. J Phys Chem B 120(30):7423–7437. https://doi.org/10.1021/acs.jpcb.6b05524

    Article  Google Scholar 

  31. Qiu F, Hao Y, Li X, Wang B, Wang M (2015) Functionalized graphene sheets filled isotactic polypropylene nanocomposites. Compos Part B 71:175–183. https://doi.org/10.1016/j.compositesb.2014.11.027

    Article  Google Scholar 

  32. Zhao F, Zhang L, Li G, Guo Y, Qi H, Zhang G (2018) Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide. Carbon 136:309–319. https://doi.org/10.1016/j.carbon.2018.05.002

    Article  Google Scholar 

  33. Li L-p, Yin B, Zhou Y, Gong L, Yang M-b, Xie B-h, Chen C (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell structure. Polymer 53(14):3043–3051. https://doi.org/10.1016/j.polymer.2012.05.003

    Article  Google Scholar 

  34. Xiao H, Liu S (2018) Zirconium phosphate (ZrP)-based functional materials: synthesis, properties and applications. Mater Des 155:19–35. https://doi.org/10.1016/j.matdes.2018.05.041

    Article  Google Scholar 

  35. Sun L, Boo WJ, Sue H-J, Clearfield A (2007) Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem 31(1):39–43. https://doi.org/10.1039/b604054c

    Article  Google Scholar 

  36. Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) Barrier properties of model epoxy nanocomposites. J Membr Sci 318(1):129–136. https://doi.org/10.1016/j.memsci.2008.02.041

    Article  Google Scholar 

  37. Boo WJ, Sun LY, Liu J, Clearfield A, Sue HJ, Mullins MJ, Pham H (2007) Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos Sci Technol 67(2):262–269. https://doi.org/10.1016/j.compscitech.2006.08.012

    Article  Google Scholar 

  38. Huang T-C, Lai G-H, Li C-E, Tsai M-H, Wan P-Y, Chung Y-H, Lin M-H (2017) Advanced anti-corrosion coatings prepared from α-zirconium phosphate/polyurethane nanocomposites. RSC Adv 7(16):9908–9913. https://doi.org/10.1039/c6ra27588e

    Article  Google Scholar 

  39. Li P, White KL, Lin CH, Kim D, Muliana A, Krishnamoorti R, Nishimura R, Sue HJ (2014) Mechanical reinforcement of epoxy with self-assembled synthetic clay in smectic order. ACS Appl Mater Interfaces 6(13):10188–10195. https://doi.org/10.1021/am5015293

    Article  Google Scholar 

  40. Wang D-Y, Liu X-Q, Wang J-S, Wang Y-Z, Stec AA, Hull TR (2009) Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polym Degrad Stab 94(4):544–549. https://doi.org/10.1016/j.polymdegradstab.2009.01.018

    Article  Google Scholar 

  41. Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) Barrier properties of model epoxy nanocomposites. J Membr Sci 318(1–2):129–136. https://doi.org/10.1016/j.memsci.2008.02.041

    Article  Google Scholar 

  42. Yingjing Dai WN, Zhang X, Hong X, Dong J (2017) Tribological investigation of layered zirconium phosphate in anhydrous calcium grease. Lubricants 5(3):22. https://doi.org/10.3390/lubricants5030022

    Article  Google Scholar 

  43. Liu L, Chen ZF, Wei HB, Li Y, Fu YC, Xu H, Li JP, Slawin AM, Dong JX (2010) Ionothermal synthesis of layered zirconium phosphates and their tribological properties in mineral oil. Inorg Chem 49(18):8270–8275. https://doi.org/10.1021/ic100657a

    Article  Google Scholar 

  44. Shuai M, Mejia AF, Chang Y-W, Cheng Z (2013) Hydrothermal synthesis of layered α-zirconium phosphate disks: control of aspect ratio and polydispersity for nano-architecture. CrystEngComm 15(10):1970. https://doi.org/10.1039/c2ce26402a

    Article  Google Scholar 

  45. Zhang H, Chen L, Han X, Jiang F, Sun H, Sun D (2017) Enhanced mechanical properties of Nylon6 nanocomposites containing pristine α-zirconium phosphate nanoplatelets of various sizes by melt-compounding. RSC Adv 7(52):32682–32691. https://doi.org/10.1039/c7ra05458k

    Article  Google Scholar 

  46. Gam H-JST (2004) Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chem Mater 16(2):242–249. https://doi.org/10.1021/cm030441s

    Article  Google Scholar 

  47. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094

    Article  Google Scholar 

  48. Lazzeri A, Thio YS, Cohen RE (2004) Volume strain measurements on CaCO3/polypropylene particulate composites: the effect of particle size. J Appl Polym Sci 91(2):925–935. https://doi.org/10.1002/app.13268

    Article  Google Scholar 

  49. Singh RP, Zhang M, Chan D (2002) Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J Mater Sci 37(4):781–788. https://doi.org/10.1023/a:1013844015493

    Article  Google Scholar 

  50. Suprapakorn N, Dhamrongvaraporn S, Ishida H (1998) Effect of CaCO3 on the mechanical and rheological properties of a ring-opening phenolic resin: polybenzoxazine. Polym Compos 19(2):126–132. https://doi.org/10.1002/pc.10082

    Article  Google Scholar 

  51. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B 39(6):933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  52. Zhang Z, Breidt C, Chang L, Haupert F, Friedrich K (2004) Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2. Compos A: Appl Sci Manuf 35(12):1385–1392. https://doi.org/10.1016/j.compositesa.2004.05.005

    Article  Google Scholar 

  53. You Y-L, Li D-X, Si G-J, Lv R-Y, Deng X (2016) Improvement in the tribological properties of polyamide 6. J Thermoplast Compos Mater 29(4):494–507. https://doi.org/10.1177/0892705713519120

    Article  Google Scholar 

  54. Suresha B, Ravi Kumar BN, Venkataramareddy M, Jayaraju T (2010) Role of micro/nano fillers on mechanical and tribological properties of polyamide66/polypropylene composites. Mater Des 31(4):1993–2000. https://doi.org/10.1016/j.matdes.2009.10.031

    Article  Google Scholar 

  55. Chen Z, Liu X, Lü R, Li T (2006) Mechanical and tribological properties of PA66/PPS blend. III. Reinforced with GF. J Appl Polym Sci 102(1):523–529. https://doi.org/10.1002/app.24253

    Article  Google Scholar 

  56. Mair LH, Stolarski TA, Vowles RW, Lloyd CH (1996) Wear: mechanisms, manifestations and measurement. Report of a workshop ☆. J Dent 24(1–2):141

    Article  Google Scholar 

  57. Cartledge H, Baillie C (2002) Effects of crystallinity, transcrystallinity and crystal phases of GF/PA on friction and wear mechanisms. J Mater Sci 37(14):3005–3022

    Article  Google Scholar 

  58. Li J, Liang ZN (2010) Sliding wear performance of TiO2/short carbon fiber/polyamide 66 hybrid composites. Polym-Plast Technol Eng 49(8):848–852. https://doi.org/10.1080/03602551003773148

    Article  Google Scholar 

  59. Li D-X, You Y-L, Deng X, Li W-J, Xie Y (2013) Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites. Mater Des 46:809–815. https://doi.org/10.1016/j.matdes.2012.11.011

    Article  Google Scholar 

Download references

Funding

This work was supported by the start-up funding from Southern University of Science and Technology (SUSTech), “The Recruitment Program of Global Youth Experts of China,” and the Foundation of Shenzhen Science and Technology Innovation Committee (Grant No.: JCYJ20170817110440310, KQJSCX20170726145415637, and JCYJ20160315164631204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhi Sun.

Ethics declarations

Ethical statement

We are pleased to submit the enclosed manuscript titled “Enhanced mechanical and tribological performance of PA66 nanocomposites containing 2D layered α-zirconium phosphate nanoplatelets with different sizes,” which we wish to be considered for publication in Advanced Composites and Hybrid Materials. These data have not been published before and are not under consideration for publication elsewhere.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and informed consent

Since this paper does not involve any living creatures or humans, our paper conforms to the rules of the ethical approval and informed consent for this journal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Fang, Z., Li, T. et al. Enhanced mechanical and tribological performance of PA66 nanocomposites containing 2D layered α-zirconium phosphate nanoplatelets with different sizes. Adv Compos Hybrid Mater 2, 407–422 (2019). https://doi.org/10.1007/s42114-019-00100-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00100-z

Keywords

Navigation