Skip to main content
Log in

Gold nanoparticles immobilized on single-layer α-zirconium phosphate nanosheets as a highly effective heterogeneous catalyst

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Gold nanoparticles (Au NPs) were immobilized on single-layered α-zirconium phosphate (ZrP) nanosheets as a highly efficient heterogeneous catalyst. The nanoparticles were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS), UV–Vis spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The characterizations showed that the Au NPs with a size distribution of 2.0 ± 1.0 nm were uniformly dispersed and immobilized on single-layer ZrP nanosheets. The supported AuNPs could serve as an effective catalyst for the reduction of 4-nitrophenol by sodium borohydride (NaBH4).

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banin U, Ben-Shahar Y, Vinokurov K (2014) Hybrid semiconductor-metal nanoparticles: from architecture to function. Chem Mat 26(1):97–110. https://doi.org/10.1021/cm402131n

    Article  CAS  Google Scholar 

  2. Voisin C, Del Fatti N, Christofilos D, Vallee F (2001) Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B 105(12):2264–2280. https://doi.org/10.1021/jp0038153

    Article  CAS  Google Scholar 

  3. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29. https://doi.org/10.1016/S1748-0132(07)70016-6

    Article  Google Scholar 

  4. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Accounts Chem Res 34(3):181–190. https://doi.org/10.1021/ar000110a

    Article  CAS  Google Scholar 

  5. Haase H, Fahmi A, Mahltig B (2014) Impact of silver nanoparticles and silver ions on innate immune cells. J Biomed Nanotechnol 10(6):1146–1156. https://doi.org/10.1166/jbn.2014.1784

    Article  CAS  Google Scholar 

  6. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177(3–4):245–270. https://doi.org/10.1007/s00604-011-0758-1

    Article  CAS  Google Scholar 

  7. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108(7):2688–2720. https://doi.org/10.1021/cr068077e

    Article  CAS  Google Scholar 

  8. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217. https://doi.org/10.1039/B514191E

    Article  CAS  Google Scholar 

  9. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225. https://doi.org/10.1021/jp062536y

    Article  CAS  Google Scholar 

  10. Yu S, Wilson AJ, Heo J, Jain PK (2018) Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett 18(4):2189–2194. https://doi.org/10.1021/acs.nanolett.7b05410

    Article  CAS  Google Scholar 

  11. Mistry H, Reske R, Zeng Z, Zhao Z-J, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476. https://doi.org/10.1021/ja508879j

    Article  CAS  Google Scholar 

  12. Solmi S, Rozhko E, Malmusi A, Tabanelli T, Albonetti S, Basile F, Agnoli S, Cavani F (2018) The oxidative cleavage of trans-1,2-cyclohexanediol with O2: catalysis by supported au nanoparticles. Appl Catal A-Gen 557:89–98. https://doi.org/10.1016/j.apcata.2018.03.019

    Article  CAS  Google Scholar 

  13. Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131(32):11302–11303. https://doi.org/10.1021/ja9047653

    Article  CAS  Google Scholar 

  14. Silbaugh TL, Devlaminck P, Sofranko JA, Barteau MA (2018) Selective oxidation of ethanol over Ag, Cu and Au nanoparticles supported on Li2O/γ-Al2O3. J Catal 364:40–47. https://doi.org/10.1016/j.jcat.2018.05.011

    Article  CAS  Google Scholar 

  15. Wang L, Zhang J, Wang H, Shao Y, Liu X, Wang Y-Q, Lewis JP, Xiao F-S (2016) Activity and selectivity in nitroarene hydrogenation over Au nanoparticles on the edge/corner of Anatase. ACS Catal 6(7):4110–4116. https://doi.org/10.1021/acscatal.6b00530

    Article  CAS  Google Scholar 

  16. Pei GX, Liu XY, Wang A, Li L, Huang Y, Zhang T, Lee JW, Jang BWL, Mou C-Y (2014) Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J Chem 38(5):2043–2051. https://doi.org/10.1039/C3NJ01136D

    Article  CAS  Google Scholar 

  17. Ma A, Xie Y, Xu J, Zeng H, Xu H (2015) The significant impact of polydopamine on the catalytic performance of the carried Au nanoparticles. Chem Commun 51(8):1469–1471. https://doi.org/10.1039/C4CC08489F

    Article  CAS  Google Scholar 

  18. Kuroda K, Ishida T, Haruta M (2009) Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J Mol Catal A-Chem 298(1–2):7–11. https://doi.org/10.1016/j.molcata.2008.09.009

    Article  CAS  Google Scholar 

  19. Pachfule P, Kandambeth S, Díaz Díaz D, Banerjee R (2014) Highly stable covalent organic framework—Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50(24):3169–3172. https://doi.org/10.1039/C3CC49176E

    Article  CAS  Google Scholar 

  20. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl Catal B-Environ 181:371–378. https://doi.org/10.1016/j.apcatb.2015.08.013

    Article  CAS  Google Scholar 

  21. Primo A, Corma A, Garcia H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13(3):886–910. https://doi.org/10.1039/c0cp00917b

    Article  CAS  Google Scholar 

  22. Zhang S, Chang C, Huang Z, Ma Y, Gao W, Li J, Qu Y (2015) Visible-light-activated Suzuki–Miyaura coupling reactions of aryl chlorides over the multifunctional Pd/au/porous nanorods of CeO2 catalysts. ACS Catal 5(11):6481–6488. https://doi.org/10.1021/acscatal.5b01173

    Article  CAS  Google Scholar 

  23. Wang ZJ, Ghasimi S, Landfester K, Zhang KAI (2015) Photocatalytic Suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem Mat 27(6):1921–1924. https://doi.org/10.1021/acs.chemmater.5b00516

    Article  CAS  Google Scholar 

  24. Yan Z, Fu L, Zuo X, Yang H (2018) Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol. Appl Catal B-Environ 226:23–30. https://doi.org/10.1016/j.apcatb.2017.12.040

    Article  CAS  Google Scholar 

  25. Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430. https://doi.org/10.1039/c2jm16386a

    Article  CAS  Google Scholar 

  26. Li QQ, Lu BQ, Zhang LJ, Lu C (2012) Synthesis and stability evaluation of size-controlled gold nanoparticles via nonionic fluorosurfactant-assisted hydrogen peroxide reduction. J Mater Chem 22(27):13564–13570. https://doi.org/10.1039/c2jm31528a

    Article  CAS  Google Scholar 

  27. Overbury SH, Schwartz V, Mullim DR, Yan WF, Dai S (2006) Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. J Catal 241(1):56–65. https://doi.org/10.1016/j.jcat.2006.04.018

    Article  CAS  Google Scholar 

  28. Xie MR, Ding L, You ZW, Gao DY, Yang GD, Han HJ (2012) Robust hybrid nanostructures comprising gold and thiol-functionalized polymer nanoparticles: facile preparation, diverse morphologies and unique properties. J Mater Chem 22(28):14108–14118. https://doi.org/10.1039/c2jm31228j

    Article  CAS  Google Scholar 

  29. Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20(23):9889–9892. https://doi.org/10.1021/la0486281

    Article  CAS  Google Scholar 

  30. Ferrara MC, Mirenghi L, Mevoli A, Tapfer L (2008) Synthesis and characterization of sol-gel silica films doped with size-selected gold nanoparticles. Nanotechnology 19(36):9. https://doi.org/10.1088/0957-4484/19/36/365706

    Article  CAS  Google Scholar 

  31. Zhu KK, Hu JC, Richards R (2005) Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catal Lett 100(3–4):195–199. https://doi.org/10.1007/s10562-004-3454-5

    Article  CAS  Google Scholar 

  32. Porta F, Prati L (2004) Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. J Catal 224(2):397–403. https://doi.org/10.1016/j.jcat.2004.03.009

    Article  CAS  Google Scholar 

  33. Xiong ZG, Zhang LL, Ma JZ, Zhao XS (2010) Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. Chem Commun 46(33):6099–6101. https://doi.org/10.1039/c0cc01259a

    Article  CAS  Google Scholar 

  34. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6(3):102–115. https://doi.org/10.1023/a:1020181423055

    Article  CAS  Google Scholar 

  35. Ousmane M, Liotta LF, Pantaleo G, Venezia AM, Di Carlo G, Aouine M, Retailleau L, Giroir-Fendler A (2011) Supported Au catalysts for propene total oxidation: study of support morphology and gold particle size effects. Catal Today 176(1):7–13. https://doi.org/10.1016/j.cattod.2011.07.009

    Article  CAS  Google Scholar 

  36. Schubert MM, Hackenberg S, Van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197(1):113–122. https://doi.org/10.1006/jcat.2000.3069

    Article  CAS  Google Scholar 

  37. Guczi L, Petö G, Beck A, Frey K, Geszti O, Molnár G, Daróczi C (2003) Gold nanoparticles deposited on SiO2/Si(100): correlation between size, electron structure, and activity in CO oxidation. J Am Chem Soc 125(14):4332–4337. https://doi.org/10.1021/ja0213928

    Article  CAS  Google Scholar 

  38. Liotta LF, Di Carlo G, Pantaleo G, Venezia AM (2010) Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: support effect. Catal Today 158(1–2):56–62. https://doi.org/10.1016/j.cattod.2010.04.049

    Article  CAS  Google Scholar 

  39. Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S (2007) Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew Chem Int Edit 46(22):4151–4154. https://doi.org/10.1002/anie.200700080

    Article  CAS  Google Scholar 

  40. Zhou X, Shen Q, Yuan K, Yang W, Chen Q, Geng Z, Zhang J, Shao X, Chen W, Xu G (2018) Unraveling charge state of supported Au single-atoms during CO oxidation. J Am Chem Soc 140(2):554–557. https://doi.org/10.1021/jacs.7b10394

    Article  CAS  Google Scholar 

  41. Zhou Y, Liu J, Xiao M, Meng Y, Sun L (2016) Designing supported ionic liquids (ILs) within inorganic nanosheets for CO2 capture applications. ACS Appl Mater Inter 8(8):5547–5555. https://doi.org/10.1021/acsami.5b11249

    Article  CAS  Google Scholar 

  42. Zhou Y, Huang R, Ding F, Brittain AD, Liu J, Zhang M, Xiao M, Meng Y, Sun L (2014) Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications. ACS Appl Mater Inter 6(10):7417–7425. https://doi.org/10.1021/am5008408

    Article  CAS  Google Scholar 

  43. Boo WJ, Sun LY, Liu J, Moghbelli E, Clearfield A, Sue HJ, Pham H, Verghese N (2007) Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci Pol Phys 45(12):1459–1469. https://doi.org/10.1002/Polb.21163

    Article  CAS  Google Scholar 

  44. Sue HJ, Gam KT, Bestaoui N, Spurr N, Clearfield A (2004) Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chem Mat 16(2):242–249. https://doi.org/10.1021/cm030441s

    Article  CAS  Google Scholar 

  45. Boo WJ, Sun L, Liu J, Clearfield A, Sue H-J (2007) Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J Phys Chem C 111(28):10377–10381. https://doi.org/10.1021/jp072227n

    Article  CAS  Google Scholar 

  46. Boo WJ, Sun LY, Liu J, Clearfield A, Sue HJ, Mullins MJ, Pham H (2007) Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos Sci Technol 67(2):262–269. https://doi.org/10.1016/j.compscitech.2006.08.012

    Article  CAS  Google Scholar 

  47. Moghbelli E, Sun L, Jiang H, Boo WJ, Sue H (2009) Scratch behavior of epoxy nanocomposites containing α-zirconium phosphate and core-shell rubber particles. Poly Eng Sci 49(3):483–490. https://doi.org/10.1002/pen.21305

    Article  CAS  Google Scholar 

  48. Sue H, Gam KT, Bestaoui N, Clearfield A, Miyamoto M, Miyatake N (2004) Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites. Acta Mater 52(8):2239–2250. https://doi.org/10.1016/j.actamat.2004.01.015

    Article  CAS  Google Scholar 

  49. Sun L, Liu J, Kirumakki SR, Schwerdtfeger ED, Howell RJ, Albahily K, Miller SA, Clearfield A, Sue H (2009) Polypropylene nanocomposites based on designed synthetic nanoplatelets. Chem Mat 21(6):1154–1161. https://doi.org/10.1021/cm803024e

    Article  CAS  Google Scholar 

  50. Wang Q, yu J, Liu J, Guo Z, Umar A, Sun L (2013) Na+ and K+-exchanged zirconium phosphate (ZrP) as high-temperature CO2 adsorbents. Sci Adv Mater 5(5):469–474. https://doi.org/10.1166/sam.2013.1529

    Article  CAS  Google Scholar 

  51. Hu H, Martin JC, Zhang M, Southworth CS, Xiao M, Meng Y, Sun L (2012) Immobilization of ionic liquids in θ-zirconium phosphate for catalyzing the coupling of CO2 and epoxides. RSC Adv 2(9):3810–3815. https://doi.org/10.1039/c2ra00015f

    Article  CAS  Google Scholar 

  52. Sun L, Sue H-J (2010) Permeation properties of epoxy nanocomposites. In: Mittal V (ed) Barrier properties of polymer clay nanocomposites. Nova Science Publishers, New York

  53. Hu H, Martin JC, Xiao M, Southworth CS, Meng YZ, Sun LY (2011) Immobilization of ionic liquids in layered compounds via mechanochemical intercalation. J Phys Chem C 115(13):5509–5514. https://doi.org/10.1021/Jp111646d

    Article  CAS  Google Scholar 

  54. Sun LY, Boo WJ, Sun DH, Clearfield A, Sue HJ (2007) Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio Nanoplatelets. Chem Mat 19(7):1749–1754. https://doi.org/10.1021/cm062993r

    Article  CAS  Google Scholar 

  55. Wei SY, Lizu M, Zhang X, Sampathi J, Sun LY, Milner MF (2013) Electrospun poly(vinyl alcohol)/α-zirconium phosphate nanocomposite fibers. High Perform Polym 25(1):25–32. https://doi.org/10.1177/0954008312454152

    Article  CAS  Google Scholar 

  56. Zhou Y, Wang A, Wang Z, Chen M, Wang W, Sun L, Liu X (2015) Titanium functionalized α-zirconium phosphate single layer nanosheets for photocatalyst applications. RSC Adv 5(114):93969–93978. https://doi.org/10.1039/C5RA16163K

    Article  CAS  Google Scholar 

  57. Zhou Y, Liu J, Huang R, Zhang M, Xiao M, Meng Y, Sun L (2017) Covalently immobilized ionic liquids on single layer nanosheets for heterogeneous catalysis applications. Dalton Trans 46(38):13126–13134. https://doi.org/10.1039/C7DT01510K

    Article  CAS  Google Scholar 

  58. Zhou Y, Noshadi I, Ding H, Liu J, Parnas R, Clearfield A, Xiao M, Meng Y, Sun L (2018) Solid acid catalyst based on single-layer α-zirconium phosphate nanosheets for biodiesel production via esterification. Catalysts 8(1):17. https://doi.org/10.3390/catal8010017

    Article  CAS  Google Scholar 

  59. Lu N, Lin K, Kung C, Jhuo J, Zhou Y, Liu J, Sun L (2014) Intercalated polyfluorinated Pd complexes in α-zirconium phosphate for Sonogashira and heck reactions. RSC Adv 4(52):27329–27336. https://doi.org/10.1039/C4RA01830C

    Article  CAS  Google Scholar 

  60. Sun LY, Boo WJ, Browning RL, Sue HJ, Clearfield A (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17(23):5606–5609. https://doi.org/10.1021/Cm051160i

    Article  CAS  Google Scholar 

  61. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744. https://doi.org/10.1021/jp0209289

    Article  CAS  Google Scholar 

  62. Boo WJ, Sun L, Warren GL, Moghbelli E, Pham H, Clearfield A, Sue HJ (2007) Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer 48(4):1075–1082. https://doi.org/10.1016/j.polymer.2006.12.042

    Article  CAS  Google Scholar 

  63. Sun L, Boo W-J, Liu J, Clearfield A, Sue H-J, Verghese N, Pham Q, Bicerano J (2009) Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294(2):103–113. https://doi.org/10.1002/mame.200800258

    Article  CAS  Google Scholar 

  64. Sun L, Oreilly JY, Kong D, Su JY, Boo WJ, Sue H, Clearfield A (2009) The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. J Colloid Interface Sci 333(2):503–509. https://doi.org/10.1016/j.jcis.2009.02.028

    Article  CAS  Google Scholar 

  65. Yu J, Xiang L, Martin BR, Clearfield A, Sun L (2015) Direct growth of layered intercalation compounds via single step one-pot in situ synthesis. Chem Commun 51(57):11398–11400. https://doi.org/10.1039/C5CC03589A

    Article  CAS  Google Scholar 

  66. Mosby BM, Diaz A, Bakhmutov V, Clearfield A (2014) Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl Mater Interfaces 6(1):585–592. https://doi.org/10.1021/am4046553

    Article  CAS  Google Scholar 

  67. Sun L, Boo WJ, Sue H-J, Clearfield A (2007) Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem 31(1):39–43. https://doi.org/10.1039/b604054c

    Article  CAS  Google Scholar 

  68. Sun LY, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) Barrier properties of model epoxy nanocomposites. J Membr Sci 318(1–2):129–136. https://doi.org/10.1016/j.memsci.2008.02.041

    Article  CAS  Google Scholar 

  69. Gentilini C, Evangelista F, Rudolf P, Franchi P, Lucarini M, Pasquato L (2008) Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates. J Am Chem Soc 130(46):15678–15682. https://doi.org/10.1021/ja8058364

    Article  CAS  Google Scholar 

  70. Pereira J, Catlow C, Price G (1999) Ab initio studies of silica-based clusters. Part II. Structures and energies of complex clusters. J Phys Chem A 103(17):3268–3284. https://doi.org/10.1021/jp982867d

    Article  CAS  Google Scholar 

  71. Li XZ, Li FB (2001) Study of au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35(11):2381–2387. https://doi.org/10.1021/es001752w

    Article  CAS  Google Scholar 

  72. Gupta RK, Srinivasan MP, Dharmarajan R (2011) Synthesis of short chain thiol capped gold nanoparticles, their stabilization and immobilization on silicon surface. Colloid Surf A 390(1–3):149–156. https://doi.org/10.1016/j.colsurfa.2011.09.019

    Article  CAS  Google Scholar 

  73. Tuzovskaya IV, Simakov AV, Pestryakov AN, Bogdanchikova NE, Gurin VV, Farías MH, Tiznado HJ, Avalos M (2007) Co-existance of various active gold species in Au-mordenite catalyst for CO oxidation. Catal Commun 8(7):977–980. https://doi.org/10.1016/j.catcom.2006.10.014

    Article  CAS  Google Scholar 

  74. Bi N, Hu M, Zhu H, Qi H, Tian Y, Zhang H (2013) Determination of 6-thioguanine based on localized surface plasmon resonance of gold nanoparticle. Spectrochim Acta A 107(0):24–30. https://doi.org/10.1016/j.saa.2013.01.014

    Article  CAS  Google Scholar 

  75. Nakamoto M, Yamamoto M, Fukusumi M (2002) Thermolysis of gold(I) thiolate complexes producing novel gold nanoparticles passivated by alkyl groups. Chem Commun 7(15):1622–1623. https://doi.org/10.1039/b203736j

    Article  CAS  Google Scholar 

  76. Nemanashi M, Meijboom R (2013) Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci 389(1):260–267. https://doi.org/10.1016/j.jcis.2012.09.012

    Article  CAS  Google Scholar 

  77. Centeno MA, Paulis M, Montes M, Odriozola JA (2002) Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Appl Catal A Gen 234(1–2):65–78. https://doi.org/10.1016/s0926-860x(02)00214-4

    Article  CAS  Google Scholar 

  78. Bingwa N, Meijboom R (2015) Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol. J Mol Catal A Chem 396(0):1–7. https://doi.org/10.1016/j.molcata.2014.09.019

    Article  CAS  Google Scholar 

  79. Rashid MH, Bhattacharjee RR, Kotal A, Mandal TK (2006) Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 22(17):7141–7143. https://doi.org/10.1021/la060939j

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was from the ACS Petroleum Research Fund (Grant No. 57580-ND5) and the National Science Foundation (CMMI-1562907). Y.Z. received financial support from the Natural Science Foundation of Jiangsu Province for Youth (BK20160960) and the 14th Six Talents Peak Project of Jiangsu Province (XNYQC-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuezhong Meng or Luyi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Yes

Informed consent

n/a

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ding, H., Liu, J. et al. Gold nanoparticles immobilized on single-layer α-zirconium phosphate nanosheets as a highly effective heterogeneous catalyst. Adv Compos Hybrid Mater 2, 520–529 (2019). https://doi.org/10.1007/s42114-019-00091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00091-x

Keywords

Navigation