Skip to main content
Log in

Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polymer nanocomposite (PNC) films have been prepared by the solution-cast method using a polymer blend of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) (PEO/PMMA = 50/50 wt%) as organic host matrix and x wt% Al2O3 nanoparticles (x = 0, 1, 3, and 5) as inorganic nanofiller. The morphological and structural behavior of these PNC films has been examined by employing the scanning electron microscope (SEM), X-ray diffractometer (XRD), and Fourier transform infrared (FTIR) spectrometer, whereas their dielectric polarization and relaxation processes are characterized by carrying out the dielectric relaxation spectroscopy (DRS) over the frequency range 2 × 101 to 1 × 106 Hz. Impact of Al2O3 nanofiller on the spherulite and porous morphology, degree of crystallinity, polymer-polymer and polymer-nanoparticle interactions, complex dielectric permittivity, ac electrical conductivity, and the polymers structural dynamics has been explored. It is revealed that initially 1 wt% dispersion of Al2O3 in the PEO/PMMA blend matrix significantly reduces the crystallinity and dielectric permittivity, and hinders the cooperative chain segmental dynamics of the polymers which unevenly changes with the further increase of Al2O3 concentration up to 5 wt%. The dielectric and electrical parameters of these materials have also been compared with the PNC materials based on other polar polymer host matrices containing different oxide inorganic nanoparticles. The results of this work provide a guideline to design and fabricate the alumina nanoparticles loaded flexible-type polymer nanodielectric materials for advanced technologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liau WB, Chang CF (2000) Casting solvent effect on crystallization behavior and morphology of poly(ethylene oxide)/poly(methyl methacrylate). J Appl Polym Sci 76:1627–1636

    Article  Google Scholar 

  2. Sakai VG, Chen C, Maranas JK, Chowdhuri Z (2004) Effect of blending with poly(ethylene oxide) on the dynamics of poly(methyl methacrylate): a quasi-elastic neutron scattering approach. Macromolecules 37:9975–9983

    Article  Google Scholar 

  3. Ghelichi M, Qazvini NT, Jafari SA, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874

    Article  Google Scholar 

  4. Sakai VG, Maranas JK, Peral I, Copley JRD (2008) Dynamics of PEO in blends with PMMA: study of the effects of blend composition via quasi-elastic neutron scattering. Macromolecules 41:3701–3710

    Article  Google Scholar 

  5. Sengwa RJ, Choudhary S (2016) Dielectric dispersion and relaxation in polymer blend based nanodielectric film. Macromol Symp 362:132–138

    Article  Google Scholar 

  6. Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites. J Polym Res 25:116

    Article  Google Scholar 

  7. Dionisio M, Fernandes AC, Mano JF, Correia NT, Sousa RC (2000) Relaxation studies in PEO/PMMA blends. Macromolecules 33:1002–1011

    Article  Google Scholar 

  8. Farago B, Chen C, Maranas JK, Kamath S, Colby RH, Pasquale AJ, Long TE (2005) Collective motion in poly(ethylene oxide)/poly(methylmethacrylate) blends. Phys Rev E 72:031809 (11pp)

    Article  Google Scholar 

  9. Brodeck M, Alvarez F, Colmenero J, Richter D (2012) Single chain dynamic structure factor of poly(ethylene oxide) in dynamically asymmetric blends with poly(methyl methacrylate). Neutron scattering and molecular dynamics simulations. Macromolecules 45:536–542

    Article  Google Scholar 

  10. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO–PMMA polymer composite electrolytes doped with nano–Al2O3. Electrochim Acta 169:334–341

    Article  Google Scholar 

  11. Lim YS, Jung H-A, Hwang H (2018) Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies 11:2559

    Article  Google Scholar 

  12. Kanimozhi G, Vinoth S, Harish K, Srinadhu ES, Satyanarayana N (2018) Conductivity and dielectric permittivity studies of KI-based nanocomposite (PEO/PMMA/KI/I2/ZnO nanorods) polymer solid electrolytes. Polym Compos. https://doi.org/10.1002/pc.25123

  13. Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influence of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3x wt% MMT nanocomposite electrolytes. Ionics 21:95–109

    Article  Google Scholar 

  14. Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24:135

    Article  Google Scholar 

  15. Sengwa RJ, Dhatarwal P, Choudhary S (2018) Study of time-ageing effect on the ionic conduction and structural dynamics in solid polymer electrolytes by dielectric relaxation spectroscopy. Solid State Ionics 324:247–259

    Article  Google Scholar 

  16. Venkatesan S, Liu I-P, Lin J-C, Tsai M-H, Teng H, Lee Y-L (2018) Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes. J Mater Chem A 6:10085–10094

    Article  Google Scholar 

  17. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253

    Article  Google Scholar 

  18. Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75:765–774

    Article  Google Scholar 

  19. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA–LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167

    Article  Google Scholar 

  20. Dhatarwal P, Sengwa RJ, Choudhary S (2019) Effectively improved ionic conductivity of montmorillonite clay nanoplatelets incorporated nanocomposite solid polymer electrolytes for lithium ion-conducting devices. SN Appl Sci 1:112

    Article  Google Scholar 

  21. Glynos E, Petropoulou P, Mygiakis E, Nega AD, Pan W, Papoutsakis L, Giannelis EP, Sakellariou G, Anastasiadis SH (2018) Leveraging molecular architecture to design new, all-polymer solid electrolytes with simultaneous enhancement in modulus and ionic conductivity. Macromolecules 51:2542–2550

    Article  Google Scholar 

  22. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941

    Article  Google Scholar 

  23. Dhatarwal P, Choudhary S, Sengwa RJ (2018) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos Commun 10:11–17

    Article  Google Scholar 

  24. Guo JZ, Song K, Liu C (2019) Polymer-based multifunctional nanocomposites and their applications. Elsevier Inc., Amsterdam

    Google Scholar 

  25. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1:415–439

    Article  Google Scholar 

  26. Aqeel SM, Huang Z, Walton J, Baker C, Falkner D’L, Liu Z, Wang Z (2018) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192

    Article  Google Scholar 

  27. Wei H, Gu H, Guo J, Cui D, Yan X, Liu J, Cao D, Wang X, Wei S, Guo Z (2018) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater 1:127–134

    Article  Google Scholar 

  28. Chen J, Liu B, Gao X, Xu D (2018) A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 8:28048

    Article  Google Scholar 

  29. Tan D, Irwin P (2011) Polymer based nanodielectric composites in, advances in ceramics: electric and magnetic ceramics, bioceramics, ceramics and environment ed. by Sikalidis C., Intechopen, London

  30. Daily CS, Sun W, Kessler MR, Tan X, Bowler N (2014) Modeling the interphase of a polymer-based nanodielectric. IEEE Trans Dielectric Electrical Insul 21:488–496

    Article  Google Scholar 

  31. Tanaka T, Vaughan AS (2017) Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications. Pan Stanford Publishing Pte. Ltd., Singapore

    Google Scholar 

  32. Choudhary S, Sengwa RJ (2019) Investigation on structural and dielectric properties of silica nanoparticles incorporated poly(ethylene oxide)/poly(vinyl pyrrolidone) blend matrix based nanocomposites. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-018-1034-1

  33. Choudhary S, Sengwa RJ (2018) ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr Appl Phys 18:1041–1058

    Article  Google Scholar 

  34. Mathur V, Arya PK (2018) Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Adv Compos Hybrid Mater 1:741–747

    Article  Google Scholar 

  35. Morsi MA, Rajeh A, Menazea AA (2019) Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-018-0545-4

  36. Ambrosio R, Carrillo A, Mota ML, Torre K, Torrealba R, Moreno M, Vazquez H, Flores J, Vivaldo I (2018) Polymeric nanocomposites membranes with high permittivity based on PVA-ZnO nanoparticles for potential applications in flexible electronics. Polymers 10:1370

    Article  Google Scholar 

  37. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659

    Article  Google Scholar 

  38. Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54

    Article  Google Scholar 

  39. Choudhary S (2018) Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J Mater Sci Mater Electron 29:10517–10534

    Article  Google Scholar 

  40. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604

    Article  Google Scholar 

  41. Choudhary S (2017) Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Physica B 522:48–56

    Article  Google Scholar 

  42. Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos Commun 5:54–63

    Article  Google Scholar 

  43. Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627

    Article  Google Scholar 

  44. Choudhary S (2018) Structural, morphological, thermal, dielectric, and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix-based polymer nanocomposites. Polym Compos 39:E1788–E1799

    Article  Google Scholar 

  45. Choudhary S (2018) Influence of Al2O3 nanoparticles on the dielectric properties and structural dynamics of PVA-PEO blend based nanocomposites. Indian J Chem Technol 25:51–60

    Google Scholar 

  46. Evans KA (1996) The manufacture of alumina and its use in ceramics and related applications. Key Eng Mater 122–124:489–526

    Article  Google Scholar 

  47. Tok AIY, Boey FYC, Zhao XL (2006) Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J Mater Process Technol 178:270–273

    Article  Google Scholar 

  48. Wang Y, Shih K, Jiang X (2012) Phase transformation during the sintering of γ-alumina and the simulated Ni-laden waste sludge. Ceram Int 38:1879–1886

    Article  Google Scholar 

  49. Luo Y, Wu G, Liu J, Peng J, Zhu G, Gao G (2014) Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics. IEEE Trans Dielect Elect Insul 21:1824–1834

    Article  Google Scholar 

  50. Bhavsar S, Patel GB, Singh NL (2018) Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films. Physica B 533:12–16

    Article  Google Scholar 

  51. Kaybal HB, Ulus H, Demir O, Şahin ÖS, Avc A (2018) Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites. Eng Sci Technol Int J 21:399–407

    Article  Google Scholar 

  52. Zhou P, Wang S, Tao C, Guo X, Hao L, Shao Q, Liu L, Wang Y-P, Chu W, Wang B, Luo S-Z, Guo Z (2018) PAA/alumina composites prepared with different molecular weight polymers and utilized as support for nickel-based catalyst. Adv Polym Technol 37:2325–2335

    Article  Google Scholar 

  53. Mallakpour S, Khadem E (2015) Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog Polym Sci 51:74–93

    Article  Google Scholar 

  54. Sengwa RJ, Chouhdary S (2017) Nonlinear enhancement of the dielectric properties of PVA-Al2O3. Adv Mater Process 2:280–287

    Google Scholar 

  55. Das S, Ghosh A (2015) Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes. J Appl Phys 117:174103

    Article  Google Scholar 

  56. Bandara TMWJ, Karunathilaka DGN, Ratnasekera JL, Silva LAD, Herath AC, Mellander BE (2017) Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide. Ionics 23:1711–1719

    Article  Google Scholar 

  57. Fullerton-Shirey SK, Maranas JK (2010) Structure and mobility of PEO/LiClO4 solid polymer electrolytes filled with Al2O3 nanoparticles. J Phys Chem C 114:9196–9206

    Article  Google Scholar 

  58. Arjomandi J, Lee JY, Movafagh R, Moghanni-Bavil-Olyaei H, Parvin MH (2018) Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J Electroanal Chem 810:100–108

    Article  Google Scholar 

  59. Masoud EM, El-Bellihi A-A, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228

    Article  Google Scholar 

  60. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  Google Scholar 

  61. Mishra MK, Moharana S, Behera B, Mahaling RN (2017) Surface functionalization of BiFeO3: a pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)–BiFeO3 composite films. Front Mater Sci 11:82–91

    Article  Google Scholar 

  62. Pan Z, Yao L, Zhai J, Shen B, Wang H (2017) Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos Sci Technol 147:30–38

    Article  Google Scholar 

  63. Kaur R, Samra KS (2018) Electrical and mechanical behavior of polymethyl methacrylate/cadmium sulphide composites. Physica B 538:29–34

    Article  Google Scholar 

  64. Maji P, Choudhary RB, Majhi M (2018) Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application. Appl Phys A Mater Sci Process 124:70

    Article  Google Scholar 

  65. Mao F, Shi Z, Wang J, Zhang C, Yang C, Huang M (2018) Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv Compos Hybrid Mater 1:548–557

    Article  Google Scholar 

  66. Huang YH, Schadler LS (2017) Understanding the strain-dependent dielectric behaviour of carbon black reinforced natural rubber - an interfacial or bulk phenomenon. Compos Sci Technol 142:91–97

    Article  Google Scholar 

  67. Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN (2007) Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett 1:781–789

    Article  Google Scholar 

  68. Mukherjee PS, Das AK, Dutta B, Meikap AK (2017) Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J Phys Chem Solids 111:266–273

    Article  Google Scholar 

  69. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2017) Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym Compos 38:287–298

    Article  Google Scholar 

  70. Rajeh A, Morsi MA, Elashmawi IS (2019) Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159:430–440

    Article  Google Scholar 

  71. Choudhary S (2018) Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J Phys Chem Solids 121:196–209

    Article  Google Scholar 

  72. Choudhary S (2016) Characterization of SiO2 nanoparticles dispersed (PVA–PEO) blend based nanocomposites as the polymeric nanodielectric materials. Indian J Eng Mater Sci 23:399–410

  73. Choudhary S, Sengwa RJ (2017) Role of doped ZnO nanoparticles as polymer chain segmental motion exciter in PVA-ZnO nanocomposites investigated by dielectric relaxation spectroscopy. Adv Mater Process 2:315–324

    Article  Google Scholar 

  74. Choudhary S, Sengwa RJ (2016) Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites. AIP Conf Proc 1728:020420

    Article  Google Scholar 

  75. Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, Wei M, Li M, Liao Y (2018) Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53:2638–2647

    Article  Google Scholar 

  76. Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43:588–610

    Article  Google Scholar 

  77. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Al-Ali AlMaadeed M, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134:44427

    Article  Google Scholar 

  78. Feig VR, Tran H, Bao Z (2018) Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 4:337–348

    Article  Google Scholar 

  79. Li R, Wang L, Yin L (2018) Materials and devices for biodegradable and soft biomedical electronics. Materials 11:2108

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (PD) thanks the CSIR, New Delhi, for the award of a postdoctoral research associate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengwa, R.J., Choudhary, S. & Dhatarwal, P. Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater 2, 162–175 (2019). https://doi.org/10.1007/s42114-019-00078-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00078-8

Keywords

Navigation