Skip to main content
Log in

Micro/mesoporous conjugated fluorinated iron-porphyrin polymer: porosity and heterogeneous catalyst for oxidation

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A conjugated micro/mesoporous polymer based on fluorinated iron-porphyrin, FCMP-1, has been prepared via Sonogashira-Hagihara coupling polymerization. The BET-specific surface area of FCMP-1 is about 440 m2 g−1, and its pore sizes are mainly distributed in 0.81 nm and the range of 2.9–3.4 nm, which show that FCMP-1 is the micro/mesoporous polyporphyrin. The polymer shows moderate uptake for methane (4.23 wt%, 273 K) and toluene (615 mg g−1, 298 K). It was also studied as the heterogeneous oxidation catalyst for the oxidative transformation of substituted toluene to corresponding benzoic acid as well as Baeyer–Villiger oxidation using dioxygen as an oxidant. The yields of substituted benzoic acid are ranged from 77 to 88% by employing FCMP-1 as catalyst. Particularly, the yields of the reactions for producing ε-caprolactone (more than 99% selectivity) are ranged from 85 to 98%. The channels derived from the porous structure of Fe-porphyrin network are advantageous for the reactive molecules to contact with the catalytic sites and accelerate the diffusion of reactant and product. When compared with the polymer analogue without fluorinated substituents, FCMP-1 with fluorinated phenyl substituents demonstrates the better catalytic performance and cyclic utilization. The fluorinated phenyl moieties linked to Fe-porphyrins facilitate the transformation, due to their stabilizing effect on porphyrin to restrain the breakdown of the catalyst.

Micro/mesoporous conjugated fluorinated iron-porphyrin polymer FCMP-1 was synthesized. Its uptake performance and catalytic activity for oxidation were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang F, Jin T, Zhu X, Tian Z, Do-Tahanh C, Hu J, Jiang D, Wang H, Liu H, Dai S (2016) Substitution effect guided synthesis of task-specific nanoporous polycarbazoles with enhanced carbon capture. Macromolecules 49:5325–5330

    Article  CAS  Google Scholar 

  2. Chen Q, Liu D, Zhu J, Han B (2014) Mesoporous conjugated polycarbazole with high porosity via structure tuning. Macromolecules 47:5926–5931

    Article  CAS  Google Scholar 

  3. Kang N, Park J, Ko K, Chun J, Kim E, Shin H, Lee S, Kim H, Ahn T, Lee J, Son S (2013) Tandem synthesis of photoactive benzodifuran moieties in the formation of microporous organic networks. Angew Chem Int Ed Engl 52:6228–6232

    Article  CAS  Google Scholar 

  4. Wei Y, Chen W, Zhao X, Ding S, Han S, Chen L (2016) Solid-state emissive cyanostilbene based conjugated microporous polymers via cost-effective knoevenagel polycondensation. Polym Chem 7:3983–3988

    Article  CAS  Google Scholar 

  5. Su C, Tandiana R, Tian B, Sengupta A, Tang W, Su J, Loh K (2016) Visible-light photocatalysis of aerobic oxidation reactions using carbazolic conjugated microporous polymers. ACS Catal 6:3594–3599

    Article  CAS  Google Scholar 

  6. Luo J, Zhang X, Lu J, Zhang J (2017) Fine tuning the redox potentials of carbazolic porous organic frameworks for visible-light photoredox catalytic degradation of lignin β-O-4 models. ACS Catal 7:5062–5070

    Article  CAS  Google Scholar 

  7. Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031

    Article  CAS  Google Scholar 

  8. Das S, Heasman P, Ben T, Qiu S (2017) Porous organic materials: strategic design and structure–function correlation. Chem Rev 177:1515–1563

    Article  Google Scholar 

  9. Wu K, Guo J, Wang J (2016) An elastic monolithic catalyst: a microporous metalloporphyrin-containing framework-wrapped melamine foam for process-intensified acyl transfer. Angew Chem Int Ed Engl 55:6013–6017

    Article  CAS  Google Scholar 

  10. Feng L, Chen Q, Zhu J, Liu D, Zhao Y, Han B (2014) Adsorption performance and catalytic activity of porous conjugated polyporphyrins via carbazole-based oxidative coupling polymerization. Polym Chem 5:3081–3088

    Article  CAS  Google Scholar 

  11. Chen Q, Han B (2018) Microporous polycarbazole materials: from preparation and properties to applications. Macromol Rapid Commun 39:1800040 (1-11)

    Article  Google Scholar 

  12. Que L, Tolman W (2008) Biologically inspired oxidation catalysis. Nature 455:333–340

    Article  CAS  Google Scholar 

  13. Gunter M, Turner P (1991) Metalloporphyrins as models for the cytochromes p-450. Coord Chem Rev 108:115–161

    Article  CAS  Google Scholar 

  14. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

  15. Shultz A, Farha O, Hupp J, Nguyen S (2012) Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem Sci 2:686–689

    Article  Google Scholar 

  16. Chen L, Yang Y, Guo Z, Jiang D (2011) Highly efficient activation of molecular oxygen with nanoporous metalloporphyrin frameworks in heterogeneous systems. Adv Mater 23:3149–3154

    Article  CAS  Google Scholar 

  17. Marques A, Marin M, Ruasse M (2001) Hydrogen peroxide oxidation of mustard-model sulfides catalyzed by iron and manganese tetraarylporphyrines. Oxygen transfer to sulfides versus H2O2 dismutation and catalyst breakdown. J Org Chem 66:7588–7595

    Article  CAS  Google Scholar 

  18. Cao Q, Yin Q, Chen Q, Dong Z, Han B (2017) Fluorinated porous conjugated polyporphyrins via direct C-H arylation polycondensation: preparation, porosity, and use as heterogeneous catalyst for Baeyer-Villiger oxidation. Chem Eur J 23:9831–9837

    Article  CAS  Google Scholar 

  19. Leroya J, Schollhorna B, Syssa-Magale J, Boubekeurb K, Palvadeau P (2004) Convenient preparation of 2,3,5,6-tetrafluoro-4-iodo-benzaldehyde and its application in porphyrin synthesis. J Fluor Chem 125:1379–1382

    Article  Google Scholar 

  20. Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 1329:138–9142

    Google Scholar 

  21. Wang L, She Y, Zhong R, Ji H, Zhang Y, Song X (2006) A green process for oxidation of p-nitrotoluene catalyzed by metalloporphyrins under mild conditions. Org Process Res Dev 10:757–761

    Article  CAS  Google Scholar 

  22. Lan H, Zhou X, Ji H (2013) Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance toward the Iron(III) porphyrins-catalyzed aerobic Baeyer–Villiger oxidation of cyclohexanone, kinetic and mechanistic features. Tetrahedron 69:4241–4246

    Article  CAS  Google Scholar 

  23. Weber J, Thomas A (2008) Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J Am Chem Soc 130:6334–6335

    Article  CAS  Google Scholar 

  24. Xiao Z, Zhou Y, Xin X, Zhang Q, Zhang L, Wang R, Sun D (2016) Iron(III) porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of Congo red. Macromol Chem Phys (4):599–604

  25. Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  26. Shi M, Bai M, Li B (2018) Synthesis of mesoporous crosslinked polyaniline using SDS as a soft template for high-performance supercapacitors. J Mater Sci 53:9731–9741

    Article  CAS  Google Scholar 

  27. Geng T, Zhu H, Song W, Zhu F, Wang Y (2016) Conjugated microporous polymer-based carbazole derivatives as fluorescence chemosensors for picronitric acid. J Mater Sci 51:4104–4114

    Article  CAS  Google Scholar 

  28. Feng L, Zhang S, Sun X, Dong A, Chen Q (2018) Boronic acid-functionalized porous polycarbazoles: preparation, adsorption performance, and heterogeneous catalysts for selective oxidation. J Mater Sci 53:15025–15033

    Article  CAS  Google Scholar 

  29. Sadiq M, Rubio-Martinez M, Zadehahmadi F, Suzuki K, Hill M (2018) Magnetic framework composites for low concentration methane capture. Ind Eng Chem Res 57:6040–6047

    Article  CAS  Google Scholar 

  30. Kim J, Maiti A, Lin L, Stolaroff J, Smit B, Aines R (2013) New materials for methane capture from dilute and medium-concentration sources. Nat Commun 1694(1–7):4

    Google Scholar 

  31. Tong M, Lan Y, Yang Q, Zhong C (2018) High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energ Environ 3:107–119

    Article  Google Scholar 

  32. Zhu J, Chen Q, Sui Z, Pan L, Yu J, Han B (2014) Preparation and adsorption performance of cross-linked porous polycarbazoles. J Mater Chem A 2:16181–16189

    Article  CAS  Google Scholar 

  33. Hu Y, Xiang S, Zhang W, Zhang Z, Wang L, Bai J, Chen B (2009) A new MOF-505 analog exhibiting high acetylene storage. Chem Commun (48):7551–7553

  34. Wang Z, Yuan S, Mason A, Reprogle L, Yu L (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45:7413–7419

    Article  CAS  Google Scholar 

  35. Lu W, Yuan D, Zhao D, Schilling C, Plietzsch O, Muller Y, Bräse S, Guenther J, Blümel J, Krishna R, Li Z, Zhou H (2010) Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem Mater 22:5964–5972

    Article  CAS  Google Scholar 

  36. Yang S, Ding X, Han B (2018) Conjugated microporous polymers with extended π-structures for organic vapor adsorption. Macromolecules 51:947–953

    Article  CAS  Google Scholar 

  37. Li Y, Ben T, Zhang B, Fu Y, Qiu S (2013) Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci Rep 2420(1-6):3

    Google Scholar 

  38. Pan L, Chen Q, Zhu J, Yu J, He Y, Han B (2015) Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel–Crafts alkylation. Polym Chem 6:2478–2487

    Article  CAS  Google Scholar 

  39. Eddaoudi M, Li H, Yaghi O (2000) Highly porous and stable metal−organic frameworks: structure design and sorption properties. J Am Chem Soc 122:1391–1397

    Article  CAS  Google Scholar 

  40. Kishikawa K, Oda K, Aikyo S, Kohmoto S (2007) Columnar superstructures of non-disc-shaped molecules generated by arene-perfluoroarene face-to-face interactions. Angew Chem Int Ed 46:764–768

    Article  CAS  Google Scholar 

  41. Jeong E, Ansari M, Park S (2011) Aerobic Baeyer–Villiger oxidation of cyclic ketones over metalloporphyrins bridged periodic mesoporous organosilica. ACS Catal 1:855–863

    Article  CAS  Google Scholar 

  42. Ten Brink G, Arends I, Sheldon R (2004) The Baeyer–Villiger reaction: new developments toward greener procedures. Chem Rev 104:4105–4123

    Article  CAS  Google Scholar 

  43. Pan L, Xu M, Feng L, Chen Q, He Y, Han B (2016) Conjugated microporous polycarbazoles containing tris(2-phenylpyridine) iridium (III) complex: phosphorescence, porosity, and heterogeneous organic photocatalysis. Polym Chem 7:2299–2307

    Article  CAS  Google Scholar 

  44. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912

    Article  CAS  Google Scholar 

  45. Huang N, Xu Y, Jiang D (2014) High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles. Sci Rep 4:7228 (1–8)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Qi Chen is also grateful to the selfless support from Prof. Dr. Bao-Hang Han in the National Center for Nanoscience and Technology, China.

Funding

Financial support was from the National Natural Science Foundation of China (Grants 21574031, 51873053, 61761016 and 51775152), the Key Research and Development Plan of Hainan Province (Grant ZDYF2018004), and the Science and Technology Cooperation Project of Guizhou Province (Grant QKHLHZ-2015-7564).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Chen, Lijuan Feng or Ning Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, A., Wang, D., Dai, T. et al. Micro/mesoporous conjugated fluorinated iron-porphyrin polymer: porosity and heterogeneous catalyst for oxidation. Adv Compos Hybrid Mater 1, 696–704 (2018). https://doi.org/10.1007/s42114-018-0063-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0063-0

Keywords

Navigation