Skip to main content
Log in

Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Continuous fiber-reinforced SiC matrix composites, as the most common ceramic matrix composites (CMCs), have been extensively studied in the last two decades due to low density, high strength at high temperatures, good corrosion resistance, and thermal shock resistance. Matrix modification is an effective way to obtain high-performance CMCs by the combination of tailored fiber, interphase, and matrix. This paper summarized the progress on SiC-based CMCs containing modified matrix, and the advantages brought by the hybrid matrices were revealed. For different application fields, different second phases were introduced into SiC matrix, such as B-containing phases to improve the oxidation resistance, ultra-high-temperature ceramics to improve the ablation resistance, and high electrical conductivity phases to improve the electromagnetic interference shielding properties and the phases with low complex permittivity to adjust the dielectric properties to improve the electromagnetic absorbing performance. With the formation of hybrid matrices by introducing second phases, it can essentially improve the environment performance and extend the application fields of SiC-based CMCs.

In order to obtain the multifunctional ceramic matrix composites (CMCs), various kinds of second phases were introduced to form hybrid matrices. Like the introduction of MAX phases, the modified CMCs not only have excellent strength and toughness, but also have excellent electromagnetic interference shielding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206

    Article  CAS  Google Scholar 

  2. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170

    Article  CAS  Google Scholar 

  3. Yin X, Cheng L, Zhang L et al (2017) Fibre-reinforced multifunctional SiC matrix composite materials. Int Mater Rev 62:117–172

    Article  CAS  Google Scholar 

  4. Krenkel W (2008) Ceramic matrix composites: fiber reinforced ceramics and their applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, p 2008

    Book  Google Scholar 

  5. Christin F (2002) Design, fabrication and application of thermostructural composites (TSC) like C/C, C/SiC and SiC/SiC composites. Adv Eng Mater 4:903–912

    Article  CAS  Google Scholar 

  6. Evans AG (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29:3857–3896

    Article  CAS  Google Scholar 

  7. Glass DE (2008) Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference, Dayton, pp 1–36

  8. Lamouroux F, Bertrand S, Pailler R, Naslain R, Cataldi M (1999) Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Compos Sci Technol 59:1073–1085

    Article  CAS  Google Scholar 

  9. Li M, Zhou X, Yang H et al (2018) The critical issues of SiC materials for future nuclear systems. Scr Mater 143:149–153

    Article  CAS  Google Scholar 

  10. Pi H, Fan S, Wang Y (2012) C/SiC-ZrB2-ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy. Ceram Int 38:6541–6548

    Article  CAS  Google Scholar 

  11. Tang S, Deng J, Wang S et al (2009) Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2-SiC composites. Corros Sci 51:54–61

    Article  CAS  Google Scholar 

  12. Naslain R, Guette A, Rebillat F et al (2004) Boron-bearing species in ceramic matrix composites for long-term aerospace applications. J Solid State Chem 177:449–456

    Article  CAS  Google Scholar 

  13. Fan X, Yin X, Cao X et al (2015) Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration. Compos Sci Technol 115:21–27

    Article  CAS  Google Scholar 

  14. Cao X, Yin X, Fan X et al (2014) Effect of PyC interphase thickness on mechanical behaviors of SiBC matrix modified C/SiC composites fabricated by reactive melt infiltration. Carbon 77:886–895

    Article  CAS  Google Scholar 

  15. Fan X, Yin X, Chen L et al (2016) Mechanical behavior and electromagnetic interference shielding properties of C/SiC-Ti3Si(Al)C2. J Am Ceram Soc 99:1717–1724

    Article  CAS  Google Scholar 

  16. Shi F, Yin X, Fan X et al (2010) A new route to fabricate SiB4 modified C/SiC composites. J Eur Ceram Soc 30:1955–1962

    Article  CAS  Google Scholar 

  17. Tong C, Cheng L, Yin X et al (2008) Oxidation behavior of 2D C/SiC composite modified by SiB4 particles in inter-bundle pores. Compos Sci Technol 68:602–607

    Article  CAS  Google Scholar 

  18. Ruggles-Wrenn M, Delapasse J, Chamberlain AL et al (2012) Fatigue behavior of a Hi-Niclaon™/SiC-B4C composite at 1200 °C in air and in steam. Mater Sci Eng A 534:119–128

    Article  CAS  Google Scholar 

  19. Viricelle JP, Goursat P, Bahloul-Hourlier D (2001) Oxidation behaviour of a multi-layered ceramic-matrix composite (SiC)f/C/(SiBC)m. Compos Sci Technol 61:607–614

    Article  CAS  Google Scholar 

  20. Wang Y, Xu Y, Wang Y et al (2010) Effects of TaC addition on the ablation resistance of C/SiC. Mater Lett 64:2068–2071

    Article  CAS  Google Scholar 

  21. Ma X, Yin X, Fan X et al (2018) Microstrucutre and properties of dense Tyranno-ZMI SiC/SiC containing Ti3Si(Al)C2 with plastic deformation toughening mechanism. J Eur Ceram Soc 38:1069–1078

    Article  CAS  Google Scholar 

  22. Li Q, Yin X, Zhang L et al (2016) Effects of SiC fibers on microwave absorption and electromagnetic interference shielding properties of SiCf/SiCN composites. Ceram Int 42:19237–19244

    Article  CAS  Google Scholar 

  23. Mu Y, Zhou W, Hu Y et al (2015) Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC-Al2O3 composites modified by thermal cross-linking procedure. J Eur Ceram Soc 35:2991–3003

    Article  CAS  Google Scholar 

  24. Mei H, Cheng L (2009) Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms. Carbon 47:1034–1042

    Article  CAS  Google Scholar 

  25. Nie J, Xu Y, Zhang L et al (2008) Effect of stitch spacing on mechanical properties of carbon/silicon carbide composites. Compos Sci Technol 68:2425–2432

    Article  CAS  Google Scholar 

  26. Wei K, Cheng X, Mo F et al (2016) Design and analysis of integrated thermal protection system based on lightweight C/SiC pyramidal lattice core sandwich panel. Mater Des 11:435–444

    Article  Google Scholar 

  27. Song Z, Cheng S, Zeng T et al (2015) Compressive behavior of C/SiC composite sandwich structure with stitched lattice core. Compos Part B 69:243–248

    Article  CAS  Google Scholar 

  28. Kumar S, Kushwaha J, Mondal S et al (2013) Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Mater Sci Eng A 566:102–111

    Article  CAS  Google Scholar 

  29. Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos Part A 29:1145–1155

    Article  Google Scholar 

  30. Rebillat F, Lamon J, Guette A (2000) The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater 48:4609–4618

    Article  CAS  Google Scholar 

  31. Miller JH, Liaw PK, Landes JD (2001) Influence of fiber coating thickness on fracture behavior of continuous woven Nicalon® fabric-reinforced silicon-carbide matrix ceramic composites. Mater Sci Eng A 317:49–58

    Article  Google Scholar 

  32. Mei H, Bai Q, Sun Y et al (2013) The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses. Carbon 57:288–297

    Article  CAS  Google Scholar 

  33. Singh JP, Singh D, Sutaria M (1999) Ceramic composites: roles of fiber and interphase. Compos Part A 30:445–450

    Article  Google Scholar 

  34. Dong N, Xu Y, Cheng L et al (2003) Environmental simulation experiments of 3D-C/SiC composites with different PyC interfacial layers. J Mater Sci Technol 19:77–80

    Google Scholar 

  35. Prouhet S, Camus G, Labrugère C et al (1994) Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase. J Am Ceram Soc 77:649–656

    Article  CAS  Google Scholar 

  36. Fan X, Yin X, Wang L et al (2013) Processing, microstructure and ablation behavior of C/SiC-Ti3SiC2 composites fabricated by liquid silicon infiltration. Corros Sci 74:98–105

    Article  CAS  Google Scholar 

  37. Ma Y, Yin X, Fan X et al (2018) Modification and toughening of 3D needled C/SiC composite by deformable MAX phase-based matrix. Mater Sci Eng A 712:397–405

    Article  CAS  Google Scholar 

  38. Sun X, Yin X, Fan X et al (2018) Oxidation resistance of SiC/SiC composites containing SiBC matrix fabricated by liquid silicon infiltration. J Eur Ceram Soc 38:479–485

    Article  CAS  Google Scholar 

  39. Cao X, Yin X, Ma X et al (2016) The microstructure and properties of SiC/SiC-based composites fabricated by low-temperature melt infiltration of Al-Si alloy. Ceram Int 42:10144–10150

    Article  CAS  Google Scholar 

  40. Aoki T, Ogasawara T (2015) Tyranno ZMI fiber/TiSi2-Si matrix composites for high-temperature structural applications. Compos Part A 76:102–109

    Article  CAS  Google Scholar 

  41. Aoki T, Ogasawara T, al OY (2014) Fabrication and properties of Si-Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC-based matrix composites. Compos Part A 66:155–162

    Article  CAS  Google Scholar 

  42. Chen X, Dong S, Kan Y et al (2016) Microstructure and mechanical properties of three-dimensional Cf/SiC-ZrC-ZrB2 composites prepared by reactive melt infiltration method. J Eur Ceram Soc 36:3969–3976

    Article  CAS  Google Scholar 

  43. Calard V, Lamon J et al (2004) Failure of fiber bundles. Compos Sci Technol 64:701–710

    Article  CAS  Google Scholar 

  44. He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067

    Article  Google Scholar 

  45. He MY, Hutchinson JW (1989) Kinking of a crack out of an interface. J Appl Mech 56:270–278

    Article  Google Scholar 

  46. Yin X, Travitzky N, Greil P (2007) Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3-Al2O3 composites. J Am Ceram Soc 90:2128–2134

    Article  CAS  Google Scholar 

  47. Wang L, Yin X, Fan X et al (2014) Ti3Si(Al)C2-based ceramics fabricated by reactive melt infiltration with Al70Si30 alloy. J Eur Ceram Soc 34:1493–1499

    Article  CAS  Google Scholar 

  48. Yin X, He S, Zhang L et al (2010) Fabrication and characterization of a carbon fibre reinforced carbon-silicon carbide-titanium silicon carbide hybrid matrix composite. Mater Sci Eng A 527:835–841

    Article  Google Scholar 

  49. Windsheimer H, Travitzky N, Hofenauer A et al (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19:4515–4519

    Article  CAS  Google Scholar 

  50. Barsoum MW, El-Raghy T (2001) The MAX phases: unique new carbide and nitride materials. Am Sci 89:334–343

    Article  Google Scholar 

  51. Liu Y, Zhang L, Cheng L et al (2008) Preparation and oxidation resistance of 2D C/SiC composites modified by partial boron carbide self-sealing matrix. Mater Sci Eng A 498:430–436

    Article  Google Scholar 

  52. Wang Z, Dong S, He P (2010) Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler. J Eur Ceram Soc 30:787–792

    Article  CAS  Google Scholar 

  53. Cao X, Yin X, Ma X et al (2015) Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thickness. Ceram Int 41:1695–1700

    Article  CAS  Google Scholar 

  54. Squire TH, Marschall J (2010) Material property requirements for analysis and design of UHTC components in hypersonic applications. J Eur Ceram Soc 30:2239–2251

    Article  CAS  Google Scholar 

  55. Balat MJH (1996) Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air. J Eur Ceram Soc 16:55–62

    Article  CAS  Google Scholar 

  56. Tang S, Hu C (2017) Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J Mater Sci Technol 33:117–130

    Article  Google Scholar 

  57. Fahrenholtz WG, Hilmas GE, Talmy IG et al (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364

    Article  CAS  Google Scholar 

  58. Fahrenholtz WG, Hilmas GE (2016) Ultra-high temperature ceramics: materials for extreme environments. Scr Mater 16:112–143

    Google Scholar 

  59. Hu C, Pang S, Tang S et al (2014) Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC-ZrB2-ZrC. Corros Sci 80:154–163

    Article  CAS  Google Scholar 

  60. Zeng Y, Wang D, Xiong X et al (2017) Ablation-resistance carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 °C. Nat Commun 8:15836

    Article  CAS  Google Scholar 

  61. Zhou Y, He L, Lin Z et al (2013) Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems. J Eur Ceram Soc 33:2831–2865

    Article  CAS  Google Scholar 

  62. Yin X, Kong L, Zhang L et al (2014) Electromagnetic properties of Si-C-N based ceramics and composites. Int Mater Rev 59:326–355

    CAS  Google Scholar 

  63. Chen L, Yin X, Fan X et al (2015) Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites. Carbon 95:10–19

    Article  CAS  Google Scholar 

  64. Jia Y, Li K, Xue L et al (2017) Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Carbon 111:299–308

    Article  CAS  Google Scholar 

  65. Ding D, Shi Y, Wu Z et al (2013) Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase. Carbon 60:538–561

    Article  Google Scholar 

  66. Mu Y, Zhou W, Wan F et al (2015) High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Compos Part A 77:195–203

    Article  CAS  Google Scholar 

  67. Dong N, Chen L, Yin X et al (2016) Fabrication and electromagnetic interference shielding effectiveness of Ti3Si(Al)C2 modified Al2O3/SiC composites. Ceram Int 42:9448–9454

    Article  CAS  Google Scholar 

  68. Shi S, Zhang L, Li J (2008) Ti3SiC2 material: an application for electromagnetic interference shielding. Appl Phys Lett 93:172903

    Article  Google Scholar 

  69. Tan Y, Luo H, Zhang H et al (2017) High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics. Scr Mater 134:47–51

    Article  CAS  Google Scholar 

  70. Mei H, Han D, Xiao S et al (2016) Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 109:149–153

    Article  CAS  Google Scholar 

  71. Wang H, Zhu D, Mu Y et al (2015) Effect of SiC/C preform densities on the mechanical and electromagnetic interference shielding properties of dual matrix SiC/C-SiC composites. Ceram Int 41:14094–14100

    Article  CAS  Google Scholar 

  72. Mu Y, Zhou W, Wang C et al (2014) Mechanical and electromagnetic shielding properties of SiCf/SiC composites fabricated by combined CVI and PIP process. Ceram Int 40:10037–10041

    Article  CAS  Google Scholar 

  73. Li X, Zhang L, Yin X et al (2010) Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4-SiC ceramic. Scr Mater 63:657–660

    Article  CAS  Google Scholar 

  74. Ding D, Luo F, Zhou W (2013) Effects of thermal oxidation on electromagnetic interference shielding properties of SiCf/SiC composites. Ceram Int 39:4281–4286

    Article  CAS  Google Scholar 

  75. Hu Y, Luo F, Yang Z et al (2017) Improvement dielectric and microwave properties of SiCf/SiC-AlPO4 composites prepared by precursor infiltration and pyrolysis process. J Alloys Compd 699:498–504

    Article  CAS  Google Scholar 

  76. Xue J, Yin X, Ye F et al (2017) Theoretical prediction and experimental verification on EMI shielding effectiveness of dielectric composites using complex permittivity. Ceram Int 43:16736–16743

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the supports of the Natural Science Foundation of China (Project Nos. 51725205 and 51702261) and the 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Yin, X. Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Adv Compos Hybrid Mater 1, 685–695 (2018). https://doi.org/10.1007/s42114-018-0062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0062-1

Keywords

Navigation