Skip to main content
Log in

A review on dielectric properties of biofiber-based composites

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The ever increasing consumption and subsequent disposal of electronic goods is a major concern to the environment since most electronic goods contain non-biodegradable components. Regulations on disposal of e-goods and increasing environmental awareness on their use and disposal will necessitate finding alternative materials for electronic goods in the near future. One approach of making electronic goods more environmentally friendly is by developing biodegradable electronic components using natural cellulose and protein fibers. In fact, several studies have been done on using natural fiber-based materials for various electronic components. The presence of various functional groups that are amicable to modifications and the ability to be easily fabricated into various shapes and sizes are some of the advantages of using natural fibers for electronic and electrical applications. However, natural fibers and fibrous materials have considerably high variations in their properties which makes it difficult to precisely control the properties of the products developed. Also, the type of electronic components and the fabrication and testing conditions also vary significantly between reports which makes it difficult to make a comparison between studies Dielectric materials are one of the most common and critical components in electronic goods. A comprehensive report on the type of natural fibers used in the development of dielectric materials and their electrical properties would be useful to select the appropriate fibers and conditions for specific applications. In this review, we provide an overview of the various types of natural fibers used to develop composites for dielectric applications. Dielectric constants of fibers and composites made from the fibers with and without chemical modifications and at various frequencies and fiber contents have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pandey UC, Sethi VC, Schischke K, Griese H, Reichl H (2004) Environmental management in semiconductor and printed circuit board industry in India. Part I: Survey results and case studies, Proceedings of 2004 International IEEE Conference on Asian Green Electronics, pp 139–149. https://doi.org/10.1109/AGEC.2004.1290889

  2. Guna VK, Murugesan G, Basavarajaiah BH, Ilangovan M, Olivera S, Krishna V, Reddy N (2016) Plant-based completely biodegradable printed circuit boards. IEEE Trans Electron Devices 63(12):4893–4898

    Article  CAS  Google Scholar 

  3. Saghlatoon H, Sydanheimo L, Ukkonen L, Tentzeris M (2014) Optimization of inkjet printing of patch antennas on low-cost fibrous. IEEE Antennas Wireless Propag Lett 13:915–918

    Article  Google Scholar 

  4. Nalwa HS ed (1999) Handbook of low and high dielectric constant materials and their applications. Elsevier

  5. Elimat ZM, Hussain WT, Zihlif AM (2012) PAN-based carbon fibers/PMMA composites: thermal, dielectric, and DC electrical properties. J Mater Sci Mater Electron 23(12):2117–2123

    Article  CAS  Google Scholar 

  6. Tanaka T, Montanari GC, Mulhaupt RR (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trann Dielect d Elect Insulation 11(5):763–784

    Article  CAS  Google Scholar 

  7. Sharma H, Jain S, Raj PM (2015) Magnetic and dielectric property studies in Fe- and NiFe-based polymer nanocomposites. J Electron Mater 14(10):3819–3838

    Article  Google Scholar 

  8. Bhuvaneswari HB, Vinayaka DL, Ilangovan M, Reddy N (2017) Completely biodegradable banana fiber-wheat gluten composites for dielectric applications. J Mater Sci Mater Electron 28(17):1–8

    Article  Google Scholar 

  9. Morton EW, Hearle JWA (1993) Physical properties of textile fibers, 4th edn. Woodhead Publishing in Textiles, Manchester

    Google Scholar 

  10. Jayamani E, Hamdan S, Rahman MR, Khusairy M, Bakri B (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng 97:536–544

    Article  CAS  Google Scholar 

  11. Kumar V, Kumar R (2012) Dielectric and mechanical properties of alkali- and silane-treated bamboo-epoxy nanocomposites. J Compos Mater 46(24):3089–3101

    Article  Google Scholar 

  12. Reddy N, Yang Y (2005) New long natural cellulosic fibers from cornhusks: structure and properties. AATCC Review 5(7):24–27

    CAS  Google Scholar 

  13. Fraga AN, Frullloni E, Osa ODI, Kenny JM, Vazquez A (2006) Relationship between water absorption and dielectric behaviour of natural fibre composite materials. Polym Test 25:181–187

    Article  CAS  Google Scholar 

  14. Triki M, Guicha MB, Hassen M, Arous T (2013) Comparative study of the dielectric properties of natural-fiber–matrix composites and E-glass–matrix composites. J Appl Polym Sci 129:487–498

    Article  CAS  Google Scholar 

  15. Pothan LA, George CN, Jacob M, Thomas S (2007) Effect of chemical modification on the mechanical and electrical properties of banana fiber polyester composites. J Compos Mater 41(19):2371–2386

    Article  CAS  Google Scholar 

  16. Kumar V, Sharma NK, Kumar R (2013) Dielectric, mechanical, and thermal properties of bamboo–polylactic acid bionanocomposites. J Reinf Plast Compos 32(1):42–51

    Article  Google Scholar 

  17. Tomlal EJ, Skrifvars M, Thomas S, Joseph K (2010) Thermal and crystallization behavior of cotton—polypropylene commingled composite systems. Polym Compos 31(8):1487–1494

    Google Scholar 

  18. Kiew KS, Rahman MR, Hamdan S, Talibb ZA (2013) Maleic anhydride modified unsaturated polyester composites reinforced with chicken feather fiber: dielectric and morphological study. World Appl Sci J 25(6):899–907

    CAS  Google Scholar 

  19. Zhan M, Wool RP, Xiao JQ (2011) Electrical properties of chicken feather fiber reinforced epoxy composites. Compos Part A 42:229–233

    Article  Google Scholar 

  20. Bledzki AK, Lucka MM, Mamun AA, Michalski J (2009) Biological and electrical resistance of acetylated flax fibre reinforced polypropylene composites. Bioresources 4(1):111–119

    CAS  Google Scholar 

  21. John MJ, Tlili R, Anandjiwala RD, Ibos A, Boudenne L (2012) Effect of amphiphilic coupling agent on heat flow and dielectric properties of flax–polypropylene composites. Compos Part B 43:526–523

    Article  CAS  Google Scholar 

  22. Pathania D, Singh D, Sharma D (2010) Electrical properties of natural fiber graft co-polymer reinforced phenol formaldehyde composites. Optoelectron Adv Mater 7:1048–1051

    Google Scholar 

  23. Khan MA, Khan RA, Haudaruzzaman A, Hossain A, Khan H (2009) Effect of gamma radiation on the physico-mechanical and electrical properties of jute fiber-reinforced polypropylene composites. J Reinf Plast Compos 28(13):1651–1660

    Article  CAS  Google Scholar 

  24. Zaman HU, Khan RA, Khan MA (2012) Effects of surface pretreatment on the mechanical and dielectric properties of photocuring jute fibers. Int J Polymer Mater 61:723–736

    Article  CAS  Google Scholar 

  25. Li P, Tao Y, Shi SQ (2014) Effect of fiber content and temperature on the dielectric properties of kenaf fiber-filled rigid polyurethane foam. Bioresources 9(2):2681–2688

    CAS  Google Scholar 

  26. Santulli C, Maezinotto M, Mazzetti C (2009) Influence of content and diameter of fibres and chemical treatment on the dielectric properties of oil palm fibres-rubber composites. Sci Eng Compos Mater 16(2):79–84

    Article  Google Scholar 

  27. Santhiarsa IGNN (2014) Effects of alkali treatment and weight fraction on electrical properties of palm sugar fibre-epoxy composites. Contemp Eng Sci 7(19):907–914

    Article  CAS  Google Scholar 

  28. Neher B et al (2015) Study of the electric properties of palm fiber-reinforced acrylonitrile butadiene styrene composites. J Reinf Plast Compos 34(15):1253–1260

    Article  CAS  Google Scholar 

  29. Rana AK, Singha AS (2015) Dielectric, flammability and physico-chemical properties of surface functionalized Cannabis indica fibers reinforced composite materials. Polym Sci A 27(2):221–232

    Article  Google Scholar 

  30. Sharma J, Chand N (2013) Role of cenosphere addition on dielectric properties of sisal fiber-polypropylene composites. Polym-Plast Technol Eng 52:743–749

    Article  CAS  Google Scholar 

  31. Haseena AP, Unnikrishnan G, Kalaprasad G (2007) Dielectric properties of short sisal/coir hybrid fibre reinforced natural rubber composites. Compos Interface 14(7–9):763–786

    Article  CAS  Google Scholar 

  32. Guna V, Ilangovan M, Ananthaprasad MG, Reddy N (2013) Hybrid biocomposites. Polym Compos https://doi.org/10.1002/pc.24641

  33. Tomlal E, Jose PC, Thomas KC, George K, Jayanarayanan J, Kuruvilla J (2010) Impact, tear, and dielectric properties of cotton/polypropylene commingled composites. J Reinf Plast Compos 29(12):1861–1874

    Article  CAS  Google Scholar 

  34. John MJ, Bellmann C, Anandjiwala RD (2010) Kenaf–polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites. Carb Polym 82(3):549–554

  35. Kiew KS, Hamdan S, Rahman MR (2013) Comparative study of dielectric properties of chicken feather/kenaf fiber reinforced unsaturated polyester composites. Bioresources 8(2):1591–1603

    Article  Google Scholar 

  36. Jacob M, Varghese KT, Thomas S (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7):955–965

    Article  CAS  Google Scholar 

  37. Amor IB, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2010) Effect of palm tree fiber orientation on electrical properties of palm tree fiber-reinforced polyester composites. J Compos Mater 44(13):1553–1568

    Article  Google Scholar 

  38. Joseph S, Thomas S (2008) Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 109(1):256–263

    Article  CAS  Google Scholar 

  39. Pothan LA, Chandy N, John GMJ, Thomas S (2008) Dynamic mechanical and dielectric behavior of banana-glass hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29(8):1131–1145

    Article  Google Scholar 

  40. El-Meligy MG, Mohamed SH, Mahani RM (2010) Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber–waste polyurethane foam composites. Carbohydr Polym 80(2):366–372

    Article  CAS  Google Scholar 

  41. Kechaou B, Salvia M, Beaugiraud B, Juve D, Fakhfakh Z, Treheux D (2010) Mechanical and dielectric characterization of hemp fibre reinforced polypropylene (HFRPP) by dry impregnation. Express Polym Lett 4(3):171–182

    Article  CAS  Google Scholar 

  42. Sreekumar PA, Saiter JM, Joseph K, Unnikrishnan G, Thomas S (2012) Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding. Compos A: Appl Sci Manuf 43(3):507–511

    Article  CAS  Google Scholar 

  43. Goud G, Rao RN (2011) The effect of alkali treatment on dielectric properties of Roystonea regia/epoxy composites. Int J Polym Anal Charact 16:239–250

    Article  CAS  Google Scholar 

  44. Srinivasababu N, Kumar JS, Reddy KVK (2014) Mechanical and dielectric properties of Thysanolaena Maxima (broom grass) long fibre reinforced polyester composites. Procedia Mater Sci 6:1006–1016

    Article  CAS  Google Scholar 

  45. Singha AS, Rana AK, Jarial RK (2013) Mechanical, dielectric and thermal properties of Grewia optiva fibers reinforced unsaturated polyester matrix based composites. Mater Des 51:924–934

    Article  CAS  Google Scholar 

  46. Kumar MA, Reddy GR, Mahesh KRV, Babu TH, Reddy GV, Dasaratha H, Reddy YVM (2011) Fabrication and performance of natural fibers: Sansevieria cylindrica, waste silk, jute and drum stick fibers (Moringa Olefera) reinforced with rubber polyester composites. Ind J Fiber Text Res 1(1):15–21

    Google Scholar 

  47. Neher B, Bhuiyan MR, Gafur MA, Kabir H, Hoque A, Bashar MS, Ahmed F, Hossain A (2015) An investigation of dielectric properties of chicken feather reinforced epoxy matrix composites. J Reinf Plast Compos 34(15):1253–2697

    Article  CAS  Google Scholar 

  48. Mishra SC, Nayak NB (2010) An investigation of dielectric properties of chicken feather reinforced epoxy matrix composite. J Reinf Plast Compos 29(17):2691–2697

    Article  CAS  Google Scholar 

  49. Omri MAA, Triki MG, Med Ben Hassen M, Arous H, Ahmed EH, Bulou A (2013) Effect of wool and thermo-binder fibers on adhesion of alfa fibers in polyester composite. J Appl Phys 114(22):224105

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, for their support to complete this work. Narendra Reddy expresses his thanks to the Ministry of Science and Technology, Department of Biotechnology, for the financial support through the Ramalingaswami Re-entry Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, H.B., Reddy, N. A review on dielectric properties of biofiber-based composites. Adv Compos Hybrid Mater 1, 635–648 (2018). https://doi.org/10.1007/s42114-018-0053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0053-2

Keywords

Navigation