Skip to main content
Log in

Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Owing to the electron scattering at the surface, the grain boundaries, and the defects of titanium dioxide (TiO2) nanoparticles (NPs), the electron diffusion length in the mesoporous TiO2 layer is shorter than that of TiO2 bulk single crystal, leading to a significantly increased charge recombination in dye-sensitized solar cells (DSSCs), herein TiO2 photoanode sandwiching a layer of high-mobility indium-tin-oxide (ITO) granular film to form a TiO2/ITO/TiO2 (TIT) photoanode. A large number of ITO NPs would penetrate deep into the mesoporous TiO2 bottom layer to form the interconnected network, which can be served as high-speed electron transport channels, thereby enhancing the electron transfer and collection abilities. Compared with the reference device assembled with TiO2/TiO2 (TT) photoanode, an increase of 14.78% in power conversion efficiency (PCE) was obtained for the optimized TIT device (8.23 vs 7.17%), which can be ascribed to the synergistic effects of faster electron transport and less charge recombination. Moreover, the electron transfer ability of TIT layer was also superior to TiO2-ITO composite photoanode, in which ITO NPs were uniformly dispersed in the TiO2 mesoporous layer. Overall, this method paves a facile and effective way to improve the photovoltaic performance for highly efficient DSSCs of practical significance.

The interconnected transport channel consisting of the high-mobility ITO interlayer enhances the electron transfer and collection abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  3. Snaith HJ, Schmidt-Mende L (2007) Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv Mater 19:3187–3200

    Article  Google Scholar 

  4. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Baker RH, Comte P, Péchy P, Grätzelz M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:A2255–A2261

    Article  Google Scholar 

  5. Mathew S, Yella A, Gao P, Baker RH, Curchod BFE, Astani NA, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  Google Scholar 

  6. Guo K, Li M, Fang X, Bai L, Luoshan M, Zhang F, Zhao X (2014) Improved properties of dye-sensitized solar cells by multifunctional scattering layer of yolk-shell-like TiO2 microspheres. J Power Sources 264:35–41

    Article  Google Scholar 

  7. Jiu J, Wang F, Sakamoto M, Takao J, Adachi M (2004) Preparation of nanocrystalline TiO2 with mixed template and its application for dye-sensitized solar cells. J Electrochem Soc 151:A1653

  8. Hu BB, Tang QW, Tang BL, He BL, Lin L, Chen HY (2014) Mesoporous TiO2 anodes for efficient dye-sensitized solar cells: an efficiency of 9.86% under one sun illumination. J Power Sources 267:445–451

    Article  Google Scholar 

  9. Zhao H, Deng W, Li Y (2017) Atomic layer deposited TiO2 ultrathin layer on Ag_ZnO nanorods for stable and efficient photocatalytic degradation of RhB. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-017-0015-0

  10. Wang H, Liu M, Zhang M, Wang P, Miura H, Cheng Y, Bell J (2011) Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Phys Chem Chem Phys 13:17359–17366

    Article  Google Scholar 

  11. Brennan TP, Tanskanen JT, Roelofs KE, To JWF, Nguyen WH, Bakke JR, Ding I-K, Hardin BE, Sellinger A, McGehee MD, Bent SF (2013) TiO2 conduction band modulation with In2O3 recombination barrier layers in solid-state dye-sensitized solar cells. J Phys Chem C 117:24138

    Article  Google Scholar 

  12. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  Google Scholar 

  13. Dittrich T (2000) Porous TiO2: electron transport and application to dye sensitized injection solar cells. Phys Status Solidi (a) 182:447–455

    Article  Google Scholar 

  14. Wang SM, Liu L, Chen WL, Wang EB, Su ZM (2013) Polyoxometalate–anatase TiO2 composites are introduced into the photoanode of dye-sensitized solar cells to retard the recombination and increase the electron lifetime. Dalton Trans 42:2691–2695

    Article  Google Scholar 

  15. Wang ZS, Yanagida M, Sayama K, Sugihara H (2006) Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency. Chem Mater 18:2912–2916

    Article  Google Scholar 

  16. Fan J, Li Z, Zhou W, Miao Y, Zhang Y, Hu J, Shao G (2014) Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance. Appl Surf Sci 319:75–82

    Article  Google Scholar 

  17. Xu J, Wang G, Fan J, Liu B, Cao S, Yu J (2015) G-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J Power Sources 274:77–84

    Article  Google Scholar 

  18. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  Google Scholar 

  19. Zhang L, Qin M, Yu W, Zhang Q, Xie H, Sun Z, Shao Q, Guo X, Hao L, Zheng Y, Guo Z (2017) Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc 164:H1086–H1090

    Article  Google Scholar 

  20. Zhang L, Yu W, Han C, Guo J, Zhang Q, Xie H, Shao Q, Sun Z, Guo Z (2017) Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J Electrochem Soc 164:H651–H656

    Article  Google Scholar 

  21. Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang P (2006) ZnO−Al2O3 and ZnO−TiO2 core−shell nanowire dye-sensitized solar cells. J Phys Chem B 110:22652–22663

    Article  Google Scholar 

  22. Li H, Yu Q, Huang Y, Yu C, Li R, Wang J, Guo F, Jiao S, Gao S, Zhang Y, Zhang X, Wang P, Zhao L (2016) Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 8:13384

    Article  Google Scholar 

  23. Lee B, Guo P, Li SQ, Buchholz DB, Chang RPH (2014) Three dimensional indium-tin-oxide nanorod array for charge collection in dye-sensitized solar cells. ACS Appl Mater Interfaces 6:17713–17722

    Article  Google Scholar 

  24. Kim NR, Lee JH, Lee YY, Name DH, Yeon HW, Lee SY, Yang TY, Lee Y, Chu JA, Nam KT, Joo YC (2013) Enhanced conductivity of solution-processed indium tin oxide nanoparticle films by oxygen partial pressure controlled annealing. J Mater Chem C 1:5953–5959

    Article  Google Scholar 

  25. Gondorf A, Gelle M, Weißbon J, Lorke A, Inhester M, Prodi-Schwab A, Adam D (2011) Mobility and carrier density in nanoporous indium tin oxide films. Phys Rev B 83:212201

    Article  Google Scholar 

  26. Wang HW, Ting CF, Hung MK, Chiou CH, Liu YL, Liu ZW, Ratinac KR, Ringer SP (2009) Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition. Nanotechnology 20:055601

    Article  Google Scholar 

  27. Han GS, Lee S, Noh JH, Chung HS, Park JH, Swain BS, Im J-H, Park N-G, Jung HS 3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale 6:6127–6132

  28. Fan JCC, Goodenough JB (1977) X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J Appl Phys 48:3524

    Article  Google Scholar 

  29. Keshmiri SH, Reazee-Roknabadi M, Ashok SA (2002) Novel technique for increasing electron mobility of indium-tin-oxide transparent conducting films. Thin Solid Films 413:167–170

    Article  Google Scholar 

  30. Tuna O, Selamet Y, Aygun G, Ozyuzer L (2010) High quality ITO thin films grown by DC and RF sputtering without oxygen. J Phys D Appl Phys 43:055402

    Article  Google Scholar 

  31. Dittrich T, Lebedev E, Weidmann J (1998) Electron drift mobility in porous TiO2 (anatase). Phys Status Sol (a) 165:R5–R6

    Article  Google Scholar 

  32. Chou TP, Zhang Q, Russo B, Cao G (2008) Enhanced light-conversion efficiency of titanium-dioxide dye-sensitized solar cells with the addition of indium-tin-oxide and fluorine-tin-oxide nanoparticles in electrode films. J Nanophotonics 2:023511

    Article  Google Scholar 

  33. Guo KM, Li MY, Fang XL, Liu XL, Zhu YD, Hu ZQ, Zhao XZ (2013) Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of ag nanowire core–shell structure in TiO2 films. J Mater Chem A 1:7229–7234

    Article  Google Scholar 

  34. Wang ZS, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    Article  Google Scholar 

  35. Takai A, Kamat PV (2011) Shuttling photogenerated electrons across TiO2–silver interface. ACS Nano 5:7369–7376

    Article  Google Scholar 

  36. Park JH, Jun Y, Yun H-G, Lee S-Y, Kang MG (2008) Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J Electrochem Soc 155:F145

    Article  Google Scholar 

  37. Grätzel M (2000) Perspectives for dye-sensitized nanocrystalline solar cells. Prog Photovoltaics 8:171–185

    Article  Google Scholar 

  38. Dittrich T, Beer P, Koch F, Weidmann J, Lauermann I (1998) Barrier lowering in dye-sensitized porous-TiO2 solar cells. Appl Phys Lett 73:1901–1903

    Article  Google Scholar 

  39. Ma J, Zhou L, Li C, Yang J, Meng T, Zhou H, Yang M, Yu F, Chen J (2014) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. J Power Sources 247:999–1004

    Article  Google Scholar 

  40. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  Google Scholar 

  41. Liao JY, Lin HP, Chen HY, Kuang DB, Su CY (2012) High-performance dye-sensitized solar cells based on hierarchical yolk–shell anatase TiO2 beads. J Mater Chem 22:1627–1633

    Article  Google Scholar 

  42. Han I, Koide N, Chiba Y, Mitate T (2004) Modeling of an equivalent circuit for dye-sensitized solar cells. Appl Phys Lett 84:2433

    Article  Google Scholar 

  43. Liu T, Yu K, Gao L, Chen H, Wang N, Hao L, Li T, He H, Guo Z (2017) A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J Mater Chem A 5:17848–17855

    Article  Google Scholar 

  44. Qian J, Liu P, Xiao Y, Jiang Y, Cao Y, Ai X, Yang H (2009) TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21:3663–3667

    Article  Google Scholar 

  45. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47:4213–4225

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of this research by the National Natural Science Foundations of China (Nos. 51702036, 51472043, 61761016, and 51775152), the National Key R&D Plan (2016YFE0126900), Sichuan Science and Technology Planning Project (2017GZ0135),the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015KYQD039, ZYGX2015J028, ZYGX2015J032, and ZYGX2015Z010), and the Sichuan Thousand Talents program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Liu, Ning Wang or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, T., Wang, B. et al. Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer. Adv Compos Hybrid Mater 1, 356–363 (2018). https://doi.org/10.1007/s42114-018-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0035-4

Keywords

Navigation