Skip to main content
Log in

A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the fast-developing miniaturization and integration of microelectronics packaging materials, ultrahigh-voltage electrical devices, light-emitting diodes (LEDs), and in areas which require good heat dissipation and low thermal expansion, the investigations on the polymeric composites with highly thermal conductivities and excellent thermal stabilities are urgently required, which would be beneficial to transferring the heat to the outside of the products, finally to effectively avoid substantial overheating and prolong their working life. Our article reviews recent progress in the classification, measurement methods, model and equations, mechanisms, commonly used thermally conductive fillers, and the correlative fabrication methods for the thermally conductive polymeric composites, aiming to understand and grasp how to enhance the λ value effectively. And future perspectives, focusing scientific problems and technical difficulties of the present thermally conductive polymeric composites are also described and evaluated.

Thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Robert RL (2018) Applications of high temperature polymers. CSC Press, Tysons Corner

    Google Scholar 

  2. Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymeric composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655

    Article  CAS  Google Scholar 

  3. Gu JW, Guo YQ, Lv ZY, Geng WC, Zhang QY (2015) Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos Part A-Appl S 78:95–101

    Article  CAS  Google Scholar 

  4. Chen L, Hou X, Song N, Shi L, Ding P (2018) Cellulose/graphene bioplastic for thermal management: enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Compos Part A-Appl S 107(1):189–196

    Article  CAS  Google Scholar 

  5. Li XH, Shao LB, Song N, Ding P (2016) Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Compos Part A-Appl S 88:305–314

    Article  CAS  Google Scholar 

  6. Li Y, Yi XS, Yu T, Xian GJ (2018) An overview of structural-functional-integrated composites based on the hierarchical microstructures of plant fibers. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-017-0020-3

  7. Rim YS, Bae SH, Chen HJ, De Marco N, Yang Y (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28:4415–4440

    Article  CAS  Google Scholar 

  8. Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540:386–394

    Article  CAS  Google Scholar 

  9. Du J, Gu Z, Yan L, Yong Y, Yi X, Zhang X, Liu J, Wu R, Ge C, Chen C, Zhao Y (2017) Poly (vinylpyrollidone) and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv Mater 29(34):1701268

    Article  CAS  Google Scholar 

  10. Xiao SQ, Zhang QQ, You W (2017) Molecular engineering of conjugated polymers for solar cells: an updated report. Adv Mater 29(20):1601391

    Article  CAS  Google Scholar 

  11. Truby RL, Lewis JA (2016) Printing soft matter in three dimensions. Nature 540:371–378

    Article  CAS  Google Scholar 

  12. Shin YK, Lee WS, Yoo MJ, Kim ES (2013) Effect of BN filler on thermal properties of HDPE matrix composites. Ceram Int 39:S569–S573

    Article  CAS  Google Scholar 

  13. Gu HB, Liu CT, Zhu JH, Gu JW, Wujcik EK, Shao L, Wang N, Wei HG, Scaffaro R, Zhang JX, Guo ZH (2018) Introducing advanced composites and hybrid materials. Adv Compos Hybrid Mater 1:1–5

    Article  Google Scholar 

  14. Cao JP, Zhao J, Zhao XD, You F, Yu HZ, Hu GH, Dang ZM (2013) High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos Sci Technol 89:142–148

    Article  CAS  Google Scholar 

  15. Gu JW, Xu S, Zhuang Q, Tang YS, Kong J (2017) Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE T Dielect El In 24(2):784–790

    Article  CAS  Google Scholar 

  16. Ding P, Zhang J, Song N, Tang SF, Liu YM, Shi LY (2015) Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Compos Sci Technol 109:25–31

    Article  CAS  Google Scholar 

  17. Zhu BL, Wang J, Zheng H, Ma J, Wu J, Wu R (2015) Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Composites Part B: Eng 69:496–506

    Article  CAS  Google Scholar 

  18. Song N, Yang JW, Ding P, Tang SF, Shi LY (2015) Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites. Compos Part A-Appl S 73:232–241

    Article  CAS  Google Scholar 

  19. Wang YQ, Wu GL, Kou KC, Chen Pan C, Feng AL (2016) Mechanical, thermal conductive and dielectrical properties of organic montmorillonite reinforced benzoxazine/cyanate ester copolymer for electronic packaging. J Mater Sci-Mater El 27(8):8279–8287

    Article  CAS  Google Scholar 

  20. Zhou WY, Chen QG, Sui XZ, Dong LN, Wang ZJ (2015) Enhanced thermal conductivity and dielectric properties of Al/beta-SiCw/PVDF composites. Compos Part A-Appl S 71:184–191

    Article  CAS  Google Scholar 

  21. Wu GL, Cheng YH, Wang ZD, Wang KK, Feng AL (2017) In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J Mater Sci-Mater El 28(1):576–581

    Article  CAS  Google Scholar 

  22. Li YF, Mehra N, Ji T, Yang XT, Mu LW, Gu JW, Zhu JH (2018) Stiffness-thermal conduction relationship at composite interface: effect of particle alignment on long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale 10:695–1703

    Google Scholar 

  23. Huang XY, Zhi CY, Jiang PK, Golberg D, Bando Y, Tanaka T (2013) Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23:1824–1831

    Article  CAS  Google Scholar 

  24. Mehra N, Mu L, Zhu J (2017) Developing Heat Conduction Pathways through Short Polymer Chains in a Hydrogen Bonded Polymer System. Compos Sci Technol 148:97–105

    Article  CAS  Google Scholar 

  25. Zhou WY, Gong Y, Tu LT, Xu L, Zhao W, Cai JT, Zhang YT, Zhou AN (2017) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J Alloy Compd 693:1–8

    Article  CAS  Google Scholar 

  26. Gu JW, Lv ZY, Wu YL, Zhao RX, Tian LD, Zhang QY (2015) Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique. Compos Part A-Appl S 79:8–13

    Article  CAS  Google Scholar 

  27. Mehra N, Mu L, Ji T, Li Y, Zhu J (2017) Moisture driven thermal conduction in polymer and polymer blends. Compos Sci Technol 151:115–123

    Article  CAS  Google Scholar 

  28. Shahil KMF, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    Article  CAS  Google Scholar 

  29. Yang J, Yu P, Tang LS, Bao RY, Liu ZY, Yang MB et al (2017) Hierarchically well-ordered porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45):17704–17709

    Article  CAS  Google Scholar 

  30. Gu JW, Yang XT, Lv ZY, Li N, Liang CB, Zhang QY (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Tran 92:15–22

    Article  CAS  Google Scholar 

  31. Feng CP, Ni HY, Chen J, Yang W (2016) A facile method to fabricate highly conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8(30):19732–19738

    Article  CAS  Google Scholar 

  32. Shen X, Wang ZY, Wu Y, Liu X, Kim JK (2016) Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon 108:412–422

    Article  CAS  Google Scholar 

  33. Jiang H, Yi Z, Chen P, Kong C, Li M, Wang X, Liu K, Takagi H, Wang D, Yang Z (2017) Modified thermal resistance networks model for transverse thermal conductivity of unidirectional fiber composite. Compos Commun 6:52–58

    Article  Google Scholar 

  34. Ngo IL, Jeon S, Byon C (2016) Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. Int J Heat Mass Tran 98:219–226

    Article  CAS  Google Scholar 

  35. Zhang L, Deng H, Fu Q (2018) Recent progress on thermal conductive and electrical insulating polymer composites. Compos Commun. https://doi.org/10.1016/j.coco.2017.11.004

  36. Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li HU, Iagodkine E, Haque A, Chen L-Q, Jackson TN, Wang Q (2016) Corrigendum: flexible high-temperature dielectric materials from polymer nanocomposites. Nature 536:112

    Article  CAS  Google Scholar 

  37. Gu JW, Liang CB, Zhao XM, Gan B, Qiu H, Guo YQ, Yang XT, Zhang QY, Wang DY (2017) Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol 139:83–89

    Article  CAS  Google Scholar 

  38. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced thermal conductivity of epoxygraphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737

    Article  CAS  Google Scholar 

  39. Zhou H, Deng H, Zhang L, Fu Q (2017) Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks. ACS Appl Mater Interfaces 9:29071–29081

    Article  CAS  Google Scholar 

  40. Tseng IH, Chang JC, Huang SL, Tsai MH (2013) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62:827–835

    Article  CAS  Google Scholar 

  41. Zha JW, Li WK, Zhu YH, Dang ZM, Chen G (2014) Effect of micro-Si3N4-nano-Al2O3 cofilled particles on thermal conductivity, dielectric and mechanical properties of sillicone rubber composites. IEEE T Dielect El In 21:1989–1996

    Article  CAS  Google Scholar 

  42. Yan XR, Gu JW, Guo J, Yu JF, Khan MA, Galaska AM, Sun LY, Young DP, Wei SY, Qiuyu Guo Zhang QY, Guo ZH (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327

    Article  CAS  Google Scholar 

  43. Gu HB, Ma C, Gu JW, Guo J, Yan XR, Huang JN, Zhang QY, Guo ZH (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4(48):5890–5906

    Article  CAS  Google Scholar 

  44. Guo YQ, Xu GJ, Yang XT, Ruan KP, Ma TB, Zhang QY, Gu JW, Wu YL, Liu H, Guo ZH (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites by chemically modified graphene via in-situ polymerization and electrospinning-hot press technology. J Mater Chem C 6(12):3004–3015

    Article  CAS  Google Scholar 

  45. Hu Y, Du GP, Chen N (2016) A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos Sci Technol 124:36–43

    Article  CAS  Google Scholar 

  46. Cui XL, Ding P, Zhuang N, Shi LY, Song N, Tang SF (2015) Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl Mater Interfaces 7(34):19068–19075

    Article  CAS  Google Scholar 

  47. Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou KC (2015) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Inter 7:8061–8069

    Article  CAS  Google Scholar 

  48. Zha JW, Zhu YH, Li WK, Bai JB, Dang ZM (2012) Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles. Appl Phys Lett 101:062905

    Article  CAS  Google Scholar 

  49. Gu JW, Meng XD, Tang YS, Li Y, Zhuang Q, Kong J (2017) Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos Part A-Appl S 92:27–32

    Article  CAS  Google Scholar 

  50. Gu JW, Guo YQ, Yang XT, Liang CB, Geng WC, Tang L, Li N, Zhang QY (2017) Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos Part A-Appl S 95:267–273

    Article  CAS  Google Scholar 

  51. Gu JW, Xie C, Dang J, Zhang QY (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35(6):1087–1092

    CAS  Google Scholar 

  52. Kim K, Kim J (2016) Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration. Compos Sci Technol 134:209–216

    Article  CAS  Google Scholar 

  53. Gu JW, Zhang QY, Zhang JP, Wang WW (2010) Studies on the preparation of polystyrene thermal conductivity composites. Polymer-Plast Technol 249(13):1385–1389

    Article  CAS  Google Scholar 

  54. Qian X, Gu XK, Dresselhaus MS, Yane RG (2016) Anisotropic tuning of graphite thermal conductivity by lithium intercalation. J Phys Chem Lett 7:4744–4750

    Article  CAS  Google Scholar 

  55. Tian XJ, Itkis ME, Bekyarova EB, Haddon RC (2013) Anisotropic thermal and electrical properties of thin thermal Interface layers of graphite nanoplatelet-based composites. Sci Rep 3:6

    Google Scholar 

  56. King JA, Via MD, Caspary JA, Jubinski MM, Miskioglu I, Mills OP, Bogucki GR (2010) Electrical and thermal conductivity and tensile and flexural properties of carbon nanotube/polycarbonate resins. J Appl Polym Sci 118:2512–2520

    Article  CAS  Google Scholar 

  57. Chen J, Huang XY, Zhu YK, Jiang PK (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27:9

    Google Scholar 

  58. Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL (2014) 25th anniversary article: ordered polymer structures for the engineering of photons and phonons. Adv Mater 26:532–568

    Article  CAS  Google Scholar 

  59. Zhang T, Luo TF (2016) Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J Phys Chem B 120:803–812

    Article  CAS  Google Scholar 

  60. Shuai Z, Yongmei MA, Fosong W (2007) Thermal conductive and electrical insulating polymeric composites. Plastics 36:41–45

    Google Scholar 

  61. Shen L, Zhang ZY, Wang JJ, Li WC, Zhang Q (2006) Electrical and thermal conductivity of polymers loaded with conductive filler. Mat Sci Eng 22:107–109

    CAS  Google Scholar 

  62. ISO 22007-1 (2008) Plastics—determination of thermal conductivity and thermal diffusivity—general principles

  63. ISO 8302 (1998) Thermal insulation—determination of steady state thermal resistance and related properties—guarded hot plate apparatus

  64. ASTM E 1530-06 Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique

  65. Rides M, Morikawa J, Halldahl L, Hay B, Lobo H, Dawson A, Allen C (2009) Intercomparison of thermal conductivity and thermal diffusivity methods for plastics. Polym Test 28:480–489

    Article  CAS  Google Scholar 

  66. ISO/DIS 22007-4 (2012) Plastics—determination of thermal conductivity and thermal diffusivity—part 4: laser flash method

  67. ISO/DIS 22007-2 (2008) Plastics—determination of thermal conductivity and thermal diffusivity—part 2: transient plane heat source (hot disc) method

  68. ISO 8894-1 (2010) Refractory materials—determination of thermal conductivity—part 1: hot-wire method (cross-array and resistance thermometer)

  69. Hammerschmidt U, Hameury J, Strnad R, Turzó-Andras E, Wu J (2015) Critical review of industrial techniques for thermal-conductivity measurements of thermal insulation materials. Int J Thermophys 36:1530–1544

    Article  CAS  Google Scholar 

  70. Hay B, Filtz JR, Hameury J, Rongione L (2005) Uncertainty of thermal diffusivity measurements by laser flash method. Int J Thermophys 26:1883–1898

    Article  CAS  Google Scholar 

  71. Parker W, Jenkins R, Butler C, Abbott G (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  CAS  Google Scholar 

  72. Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804

    Article  CAS  Google Scholar 

  73. Morikawa J, Leong C, Hashimoto T, Ogawa T, Urata Y, Wada S, Higuchi M, Takahashi J (2008) Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis. J Appl Phys 103:1603–1640

    Article  CAS  Google Scholar 

  74. Lobo H, Cohen C (1990) Measurement of thermal conductivity of polymer melts by the line-source method. Polym Eng Sci 30:65–70

    Article  CAS  Google Scholar 

  75. ASTM D 5930-01 (2002) Standard test method for thermal conductivity of plastics by means of a transient line-source technique. American Society for Testing and Materials

  76. Okamoto S, Ishida H (1999) A new theoretical equation for thermal conductivity of two-phase systems. J Appl Polym Sci 72:1689–1697

    Article  CAS  Google Scholar 

  77. Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Tran 48:2150–2158

    Article  Google Scholar 

  78. Li Y, Xu GJ, Guo YQ, Ma TB, Zhong X, Zhang QY, Gu JW (2018) Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos Part A-Appl S 107:570–578

    Article  CAS  Google Scholar 

  79. Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634

    Article  CAS  Google Scholar 

  80. Felske J (2004) Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int J Heat Mass Tran 47:3453–3461

    Article  Google Scholar 

  81. Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699

    Article  CAS  Google Scholar 

  82. Ott H (1981) Thermal conductivity of composite materials. Plast Rubber Proces Appl 1:9–24

    CAS  Google Scholar 

  83. Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng chem fund 1:187–191

    Article  CAS  Google Scholar 

  84. Zhou H, Zhang S, Yang M (2007) The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials. Compos Sci Technol 67:1035–1040

    Article  CAS  Google Scholar 

  85. Cheng S, Vachon R (1969) The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Tran 12:249–264

    Article  CAS  Google Scholar 

  86. Russell H (1935) Principles of heat flow in porous insulators. J Am Ceram Soc 18:1–5

    Article  CAS  Google Scholar 

  87. Leung SN, Khan MO, Chan E, Naguib H, Dawson F, Adinkrah V, Lakatos-Hayward L (2013) Analytical modeling and characterization of heat transfer in thermally conductive polymeric composites filled with spherical particulates. Compos Part B: Eng 45:43–49

    Article  CAS  Google Scholar 

  88. Lewis T, Nielsen L (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:1449–1471

    Article  CAS  Google Scholar 

  89. Agari Y, Uno T (1986) Estimation on thermal conductivities of filled polymers. J Appl Polym Sci 32:5705–5712

    Article  CAS  Google Scholar 

  90. Agari Y, Ueda A, Nagai S (1991) Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers. J Appl Polym Sci 43:1117–1124

    Article  CAS  Google Scholar 

  91. Tavman I, Akinci H (2000) Transverse thermal conductivity of fiber reinforced polymeric composites. Int Commun Heat Mass 27:253–261

    Article  Google Scholar 

  92. Rayleigh L (1911) Problems in the conduction of heat. Philos Mag 22:381–396

    Article  Google Scholar 

  93. Affdl J, Kardos J (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  94. Hatta H, Taya M, Kulacki F, Harder J (1992) Thermal diffusivities of composites with various types of filler. J Compos Mater 26:612–625

    Article  CAS  Google Scholar 

  95. Akatsuka M, Takezawa Y (2003) Study of high thermal conductive epoxy resins containing controlled high-order structures. J Appl Polym Sci 89:2464–2467

    Article  CAS  Google Scholar 

  96. Zhou Y, Liu F, Wang H (2017) Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review. Polym Composite 38:803–813

    Article  CAS  Google Scholar 

  97. Ebadi-Dehaghani H, Nazempour M (2012) Thermal conductivity of nanoparticles filled polymers. Intech Open Access Publisher.

  98. Mu L, Li Y, Mehra N, Ji T, Zhu J (2017) Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS Appl Mater Inter 9:12138–12145

    Article  CAS  Google Scholar 

  99. Mu L, He J, Li Y, Ji T, Mehra N, Shi Y, Zhu J (2017) The molecular origin of efficient phonon transfer in modulated polymer blends: effect of hydrogen bonding on polymer coil size and assembled microstructure. J Phys Chem C 121:14204–14212

    Article  CAS  Google Scholar 

  100. Choy C (1977) Thermal conductivity of polymers. Polymer 18:984–1004

    Article  CAS  Google Scholar 

  101. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Article  CAS  Google Scholar 

  102. Shen X, Wang Z, Wu Y, Liu X, He YB, Kim JK (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16:3585–3593

    Article  CAS  Google Scholar 

  103. Gu JW, Li N, Tian LD, Lv ZY, Zhang QY (2015) High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv 5:36334–36339

    Article  CAS  Google Scholar 

  104. Kwon SY, Kwon IM, Kim YG, Lee S, Seo YS (2013) A large increase in the thermal conductivity of carbon nanotube/polymeric composites produced by percolation phenomena. Carbon 55:285–290

    Article  CAS  Google Scholar 

  105. Yang XT, Tang L, Guo YQ, Liang CB, Zhang QY, Kou KC, Gu JW (2017) Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporatingNH2-POSS functionalized nBN fillers. Compos Part A-Appl S 101:237–242

    Article  CAS  Google Scholar 

  106. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  107. Efimov V, Makova M, Mezhov-Deglin L (1997) Thermal conductivity of organic superconductors. Physica C 282:1903–1904

    Article  Google Scholar 

  108. Wang X, Ho V, Segalman RA, Cahill DG (2013) Thermal conductivity of high-modulus polymer fibers. Macromolecules 46:4937–4943

    Article  CAS  Google Scholar 

  109. Kurabayashi K, Asheghi M, Touzelbaev M, Goodson KE (1999) Measurement of the thermal conductivity anisotropy in polyimide films. J Microelectromech S 8:180–191

    Article  CAS  Google Scholar 

  110. Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5:251–255

    Article  CAS  Google Scholar 

  111. Miyazaki Y, Nishiyama T, Takahashi H, Katagiri JI, Takezawa Y (2009) Development of highly thermoconductive epoxy composites. IEEE:638–641

  112. Chen HY, Ginzburg VV, Yang J, Yang YF, Liu W, Huang Y, Du LB, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  113. Wang Z, Carter JA, Lagutchev A, Koh YK, Seong NH, Cahill DG, Dlott DD (2007) Ultrafast flash thermal conductance of molecular chains. Science 317:787–790

    Article  CAS  Google Scholar 

  114. Shen MX, Cui YX, He J, Zhang YM (2011) Thermal conductivity model of filled polymeric composites. Int J Min Met Mater 18:623–631

    Article  CAS  Google Scholar 

  115. Kurabayashi K (2001) Anisotropic thermal properties of solid polymers. Int J Thermophys 22:277–288

    Article  CAS  Google Scholar 

  116. Liu J, Yang R (2010) Tuning the thermal conductivity of polymers with mechanical strains. Phys Rev B 81:174122

    Article  CAS  Google Scholar 

  117. Song SH, Katagi H, Takezawa Y (2012) Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure. Polymer 53:4489–4492

    Article  CAS  Google Scholar 

  118. Feng CP, Bai L, Bao RY, Liu ZY, Yang MB, Chen J, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybri Mater 1:160–167

    Article  Google Scholar 

  119. Yu G, Lu Y, Guo J, Patel M, Bafana A, Wang X, Qiu B, Jeffryes C, Wei S, Guo Z (2018) Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv Compos Hybri Mater 1:56–78

    Article  Google Scholar 

  120. Gu JW, Liang CB, Dang J, Dong WC, Zhang QY (2016) Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Adv 6:35809–35814

    Article  CAS  Google Scholar 

  121. Gu JW, Du JJ, Dang J, Geng WC, Hu S, Zhang QY (2014) Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv 4:22101–22105

    Article  CAS  Google Scholar 

  122. Nejad SJ, Golzary A (2010) Investigation and modeling of the thermal conductivity of PP/clay nanocomposites and PP/MWCNT nanocomposites. E-Polymers 10:1062–1068

    Article  Google Scholar 

  123. Akbarzadeh AH, Cui Y, Chen ZT (2017) Thermal wave: from nonlocal continuum to molecular dynamics. RSC Adv 7:13623–13636

    Article  CAS  Google Scholar 

  124. Yang SY, Ma CM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603

    Article  CAS  Google Scholar 

  125. Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919

    Article  CAS  Google Scholar 

  126. Zhao W, Li JJ, Jin KX, Liu WL, Qiu XF, Li CR (2016) Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mat Sci Eng C-Mater 59:1181–1194

    Article  CAS  Google Scholar 

  127. Shin HU, Li YL, Paynter A, Nartetamrongsutt K, Chase GG (2015) Vertical rod methovbers. Polymer 65:26–33

    Article  CAS  Google Scholar 

  128. McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (2007) Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules 40:997–1003

    Article  CAS  Google Scholar 

  129. Gu JW, Lv ZY, Wu Y, Guo YQ, Tian LD, Qiu H, Li W, Zhang QY (2017) Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos Part A-Appl S 94:209–216

    Article  CAS  Google Scholar 

  130. Baqiah H, Ibrahim N, Abdi M, Halim S (2013) Electrical transport, microstructure and optical properties of Cr-doped In2O3 thin film prepared by sol-gel method. J Alloy Compd 575:198–206

    Article  CAS  Google Scholar 

  131. Kumar BR, Basheer NS, Jacob S, Kurian A, George SD (2015) Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm AnalCalorim 119:453–460

    Article  CAS  Google Scholar 

  132. Saysouk F, Diaham S, Locatelli ML, Belkerk B, Scudeller Y, Salles V, Chiarac R, Toche F (2013) Enhancement of thermal conduction of polyimide/boron nitride nanocomposites. IEEE:543–546

  133. Imamura J, Durisen R, Lamb D, Weast G (1987) X-ray and ultraviolet radiation from accreting white dwarfs. IV—two-temperature treatment with electron thermal conduction. Astrophys J 313:298–319

    Article  CAS  Google Scholar 

  134. Khan AA, Alam MM, Mohammad F (2003) Ion-exchange kinetics and electrical conductivity studies of polyaniline Sn(IV) tungstoarsenate; (SnO2)(WO3)(As2O5)4 (C6H5NH)2·nH2O: a new semi-crystalline ‘polymeric–inorganic’ composite cation-exchange material. Electrochim Acta 48:2463–2472

    Article  CAS  Google Scholar 

  135. Hudec J, Glorieux C, Dieška P, Kubičár Ľ (2016) Experimental comparison and validation of hot-ball method with guarded hot plate method on polyurethane foams. Thermophysics: International Meeting. AIP Publishing LLC: 1904-1918

  136. Hong JH, Park DW, Shim SE (2010) A review on thermal conductivity of polymeric composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett 11(4):347–356

    Article  Google Scholar 

  137. Zhou W, Zuo J, Ren W (2012) Thermal conductivity and dielectric properties of Al/PVDF composites. Compos Part A-Appl S 43:658–664

    Article  CAS  Google Scholar 

  138. Huang X, Jiang P, Xie L (2009) Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl Phys Lett 95:242901

    Article  CAS  Google Scholar 

  139. Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, Koo CM (2013) Copper shell networks in polymeric composites for efficient thermal conduction. ACS Appl Mater Inter 5:11618–11622

    Article  CAS  Google Scholar 

  140. Naz A, Kausar A, Siddiq M (2017) Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: a review. Polym Plast Technol 55:604–625

    Article  CAS  Google Scholar 

  141. Tu H, Lin Y (2010) Thermal conductive PS/graphite composites. Polym Advan Technol 20(1):21–27

    Article  CAS  Google Scholar 

  142. Feng C, Ni H, Chen J, Yang W (2016) Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl Mater Inter 8:19732–19738

    Article  CAS  Google Scholar 

  143. Yazid M, Sidik N, Yahya W (2017) Heat and mass transfer characteristics of carbon nanotube nanofluids: a review. Renew Sust Energ Rev 80:914–941

    Article  CAS  Google Scholar 

  144. Mazov IN, Ilinykh IA, Kuznetsov VL (2014) Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology. J Alloy Compd 586(5):440–S442

    Article  CAS  Google Scholar 

  145. Bao R, Yan S, Qin Y (2016) Improving thermal conductivity and shear strength of carbon nanotubes/epoxy composites via thiol-ene click reaction. J Appl Polym Sci 134(8)

  146. Mehrali M, Latibari ST, Mehrali M, Mahlia TMI, Metselaar HSC, Naghavi MS, Sadeghinezhad E, Akhiani AR (2013) Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng 61:633–640

    Article  CAS  Google Scholar 

  147. Gu JW, Lv ZY, Yang XT, Wang GE, Zhang QY (2016) Fabrication and properties of thermally conductive epoxy resin nanocomposites filled with fGNPs/PNBRs hybrid fillers. Sci Adv Mater 8(5):972–979

    Article  CAS  Google Scholar 

  148. Teng CC, Ma CM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116

    Article  CAS  Google Scholar 

  149. Saeidijavash M, Garg J, Grady B, Smith B, Li Z, Robert J (2017) High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nano 9(35):12867–12873

    CAS  Google Scholar 

  150. Ghuge A, Shirode A, Kadam V (2017) Graphene: a comprehensive review. Curr Drug Targets 18:724–733

    Article  CAS  Google Scholar 

  151. Zhao WF, Tang YS, Xi J, Kong (2015) Covalent Functionalization of chemically-converted graphene sheets with poly(ionic liquid)s and High adsorption capacity of anionic dyes. Appl Surf Sci 326:276–284

    Article  CAS  Google Scholar 

  152. Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62:241–302

    Article  CAS  Google Scholar 

  153. Xu X, Lin G, Liu D, Sui G, Yang R (2018) Electrically conductive graphene-coated polyurethane foam and its epoxy composites. Compos Commun 7:1–6

    Article  Google Scholar 

  154. Gong SS, Cheng QF (2018) Bioinspired graphene-based nanocomposites via ionic interfacial interactions. Compos Commun 7:16–22

    Article  Google Scholar 

  155. Zhao WF, Kong J, Liu H, Zhuang Q, Gu JW, Guo ZH (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nano 8(48):19984–19993

    CAS  Google Scholar 

  156. Liu Z, Chen Y, Dai W, Wu Y, Wang M, Hou X, Li H, Jiang N, Lin C, Yu J (2018) Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites. RSC Adv 8:1065–1070

    Article  CAS  Google Scholar 

  157. Li H, Dai S, Miao J, Wu X, Chandrasekharan N, Qiu H, Yang J (2018) Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy. Carbon 126:319–327

    Article  CAS  Google Scholar 

  158. Li A, Zhang C, Zhang Y (2017) Thermal conductivities of PU composites with graphene aerogels reduced by different methods. Composites Part A-Appl S 103:161–167

    Article  CAS  Google Scholar 

  159. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  160. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  CAS  Google Scholar 

  161. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744

    Article  CAS  Google Scholar 

  162. Zhao CW, Li JD, Chen J, Qi RB, Luan ZK (2009) Separation of sulfur/gasoline mixture with polydimethylsiloxane/polyetherimidecomposite membranes by pervaporation. Chinese J Chem Eng 17:707–710

    Article  CAS  Google Scholar 

  163. Chen R, Johnson MB, Plucknett KP (2012) Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. J Mater Res 27:1869–1876

    Article  CAS  Google Scholar 

  164. Fang L, Wu W, Huang X (2015) Hydrangea-like zinc oxide superstructures for ferroelectric polymeric composites with high thermal conductivity and high dielectric constant. Compos Sci Technol 107:67–74

    Article  CAS  Google Scholar 

  165. Wang Z, Lu Y, Liu J (2011) Preparation of nano-zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties. J Appl Polym Sci 119:1144–1155

    Article  CAS  Google Scholar 

  166. Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part A-Appl S 53:137–144

    Article  CAS  Google Scholar 

  167. Gu JW, Zhang QY, Dang J, Zhang JP, Yang ZY (2009) Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites. Polym Eng Sci 49(5):1030–1034

    Article  CAS  Google Scholar 

  168. Zhou Y, Wang H, Wang L (2012) Fabrication and characterization of aluminum nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic packaging. Mat Sci Eng B 177(11):892–896

    Article  CAS  Google Scholar 

  169. Huang X, Iizuka T, Jiang P, Ohki Y, Tanaka T (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J PhysChem C 116:13629–13639

    CAS  Google Scholar 

  170. Kim K, Kim J (2016) Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos Part B: Eng 93:67–74

    Article  CAS  Google Scholar 

  171. Hong JP, Yoon SW, Hwang T (2012) High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta 537(11):70–75

    Article  CAS  Google Scholar 

  172. Gu JW, Zhang QY, Dang J, Yin CJ, Chen SJ (2012) Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites. J Appl Polym Sci 124(1):132–137

    Article  CAS  Google Scholar 

  173. Shen D, Zhan Z, Liu Z (2017) Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci Rep 7(1):2606

    Article  CAS  Google Scholar 

  174. Gu JW, Zhang QY, Dang J, Xie C (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Advan Technol 23(6):1025–1028

    Article  CAS  Google Scholar 

  175. Pak SY, Kim HM, Kim SY (2012) Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon 50(13):4830–4838

    Article  CAS  Google Scholar 

  176. Zhi CL (2009) Scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28):2889–2893

    Article  CAS  Google Scholar 

  177. Zeng X, Yao Y, Gong Z, Wang F, Sun R, Xu J, Wong CP (2015) Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymeric composites for thermal conductivity improvement. Small 11:6205–6213

    Article  CAS  Google Scholar 

  178. Meng W, Huang Y, Fu Y (2014) Polymeric composites of boron nitride nanotubes and nanosheets. J Mater Chem C 2(47):10049–10061

    Article  CAS  Google Scholar 

  179. Schulz MJ, Shanov VN, Yin Z (2014) Nanotube superfiber materials: changing engineering design. Elsevier, Amsterdam, pp 267–287

    Google Scholar 

  180. Su J, Xiao Y, Ren M (2013) Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets. Phys Status Solidi 210(12):2699–2705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China (Nos. 51773169 and 51403175); Open Fund from State Key Laboratory of Solid Lubrication of Lanzhou Institute of Chemical Physics (LSL-1715); Fundamental Research Funds for the Central Universities (No. 3102017jg02003); and The State Key Laboratory of Solidification Processing in NPU (No. SKLSP201713). Acknowledgement is also made to the donors of the American Chemical Society Petroleum Research Fund (#55570-DNI10) and NSF (CBET-1603264).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwei Gu or Jiahua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liang, C., Ma, T. et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1, 207–230 (2018). https://doi.org/10.1007/s42114-018-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0031-8

Keywords

Navigation