Skip to main content
Log in

Influence of ZrO2 filler on physico-chemical properties of PVA/NaClO4 polymer composite electrolytes

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The ZrO2-filled PVA/NaClO4 polymer nanocomposite is a freestanding electrolyte film and is prepared using the solution casting method in an aqueous medium. These prepared samples were characterized for structural, morphological, optical, thermal, and electrical properties. FT Raman studies confirmed the interaction between PVA and NaClO4, and dispersion of ZrO2 fillers in the PVA/NaClO4 polymer electrolyte. The surface roughness was observed from AFM images. Fitting the values of UV absorption to Tauc’s equation, the optical energy band gaps have been evaluated and correlated to the electrical conductivity. The maximum electrical conductivity of 4.3 × 10−3 (± 0.0002) S/cm was obtained for 3 wt% ZrO2-filled PVA/NaClO4 polymer nanocomposite. The thermal degradation kinetic parameter was calculated by fitting thermo gravimetric analysis values in Broid’s model.

Possible interaction of ZrO2 filled PVA/NaClO4 reflected in Raman peaks in FT-Raman spectra

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  CAS  Google Scholar 

  2. Yang R, Ogitani S, Paul K, Wong CP (2002) Novel polymer–ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J Appl Polym Sci 83:1084–1090

    Article  Google Scholar 

  3. Huanan W, Yubao L, Zuo Y, Jihua L, Sansi M, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28:3338–3348

    Article  Google Scholar 

  4. Vallerie HD, Thanh DN, Mangesh N, Nandika AD, Teresa DG (2012) Polymer nanocomposites for improved drug delivery efficiency. Mater Chem Phys 132:409–415

    Article  Google Scholar 

  5. Sheng-Wen Z, Shu-Xue Z, Yu-Ming W, Li-Min W (2005) Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir 21:2124–2128

    Article  Google Scholar 

  6. Steven H (2014) Fuel cell catalyst layers: a polymer science perspective. Chem Mater 26:381–393

    Article  Google Scholar 

  7. Jinyao C, Cindy XZ, Matthew MZ, Wang K, Deng L, Xu G (2012) Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim Acta 66:133–138

    Article  Google Scholar 

  8. Adam JG, Rona C, Andrew JC, Colleen L, Coline J, Arbel AS, Daniel A, Irene Y, Molly MS (2015) Layer-by-layer self-assembly of polymer films and capsules through coiled-coil peptides. Chem Mater 27:5820−5824

    Google Scholar 

  9. Zheng-Ming H, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nano-fibers by electro-spinning and their applications in nano-composites. Compos Sci Technol 63:2223–2253

    Article  Google Scholar 

  10. Feng H, Yugang S, Anshu G, Matthew AM, Lise B, Lolita R, Jingfeng W, Phil G, Moonsub S, John AR (2004) Polymer imprint lithography with molecular-scale resolution. Nano Lett 4(12)

  11. Long Y, Katherine D, Lin L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  Google Scholar 

  12. Lucy LD, Cindy XZ, Yiqun M, Sean SC, Xu G (2013) Low cost acetone sensors with selectivity over water vapor based on screen printed TiO2 nanoparticles. Anal Methods 5:3709

    Article  Google Scholar 

  13. Kevin KW, Han Y, Cindy XZ, Xu G, Yu Q, Wu Y, Hu N-X (2010) Direct method of tracing the wetting states on nanocomposite surfaces. Langmuir 26(11):7686–7689

    Article  Google Scholar 

  14. Cindy XZ, Steven X, Gu X (2015) Density of organic thin films in organic photovoltaics. J Appl Phys 118:044510

    Article  Google Scholar 

  15. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  16. Wang H, Xu P, Zhong W, Liang S, Qiangguo D (2005) Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym Degrad Stab 87:319–327

    Article  CAS  Google Scholar 

  17. Young MK, Chang JB, Su-Hee L, Hae-W K, Hyoun EK (2005) Improvement in biocompatibility of ZrO2–Al2O3 nanocomposite by addition of HA. Biomaterials 26:509–517

    Article  Google Scholar 

  18. Xue B, Andrea P, Vania TF, Rute ASF, Nicola P (2012) One-step synthesis and optical properties of benzoate- and biphenolate-capped ZrO2 nanoparticles. Adv Funct Mater 22:4275–4283

    Article  Google Scholar 

  19. Cao HQ, Qiu XQ, Luo B, Liang Y, Zhang YH, Tan RQ, Zhao MJ, Zhu QM (2004) Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv Funct Mater 3:243–246

    Article  Google Scholar 

  20. Junkai Z, Shengsong G, Lirong L, Qian S, Xianmin M, Cindy XZ, Luhan H, Tingting W, Zepei Y, Zhanhu G (2018) Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal. Ind Eng Chem Res 57(1):231–241

    Article  Google Scholar 

  21. Jose FB, Anton S, Heinz-D K, Janet G, Frank AM (2016) New ZrO2/Al2O3 nanocomposite fabricated from hybrid nanoparticles prepared by CO2 laser Co-vaporization. Sci Rep 6:20589

    Article  Google Scholar 

  22. Sangkyu L, Hyeon-Jin S, Seon-Mi Y, Dong Kee Y, Jae-Young C, Ungyu P (2008) Refractive index engineering of transparent ZrO2–poly dimethyl siloxane nanocomposites. J Mater Chem 18:1751–1755

    Article  Google Scholar 

  23. Nikhil HJ, Katherine D, Ravindra D (2005) Synthesis and characterization of Nafion® - MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560

    Article  Google Scholar 

  24. Basudam A, Sarmishtha M (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    Article  Google Scholar 

  25. Martin Z, Anja H, Alex F, Helmut S, Christian S, Georg J, Gunther L, Barbara S, Ingrid G, Norbert G, Reinhard S, Simona BG, Siegfried B (2007) Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors. Adv Mater 19:2241–2245

    Article  Google Scholar 

  26. Shadpour M, Ahmadreza NE (2015) A simple and environmentally friendly method for surface modification of ZrO2 nanoparticles by biosafe citric acid as well as ascorbic acid (vitamin C) and its application for the preparation of poly(vinyl chloride) nanocomposite films. Polym Compos. https://doi.org/10.1002/pc.23746

    Article  Google Scholar 

  27. Xiaodong W, Xianhu L, Hongyue Y, Hu L, Chuntai L, Tingxi L, Chao Y, Xingru Y, Changyu S, Zhanhu G (2018) Non-covalently functionalized graphene strengthened poly(vinyl alcohol). Mater Des 139:372–379

    Article  Google Scholar 

  28. Saligheh O, Khajavi R, Yazdanshenas ME, Rashidi A (2015) Fabrication and optimization of poly(vinyl alcohol)/zirconium acetate electrospun nanofibers using Taguchi experimental design. J Macromol Sci Phys 54:1391–1403

    Article  Google Scholar 

  29. Jagadish N, Bhajantri RF (2018) Physical and electrochemical studies on ceria filled PVA proton conducting polymer electrolyte for energy storage applications. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-018-0801-3.

    Article  CAS  Google Scholar 

  30. Wei D, Suying W, Jiahua Z, Xuelong C, Dan R, Zhanhu G (2010) Manipulated electrospun PVA nanofibers with inexpensive salts. Macromol Mater Eng 295:958–965

    Article  Google Scholar 

  31. Arumugam M, Xingwen Y, Shaofei W (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2(16103):1–16

    CAS  Google Scholar 

  32. Clement B, Xiulei J (2018) Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium ion battery anode. Small 1703576:1–20

    Google Scholar 

  33. Mohammed IJ, Prakash AS (2018) Advancement of technology towards developing Na-ion batteries. J Power Sources 378:268–300

    Article  Google Scholar 

  34. Premkumar S, Gwenaelle R, Vincent S, Tarascon JM, Palacin MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111

    Article  Google Scholar 

  35. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2007) Structural, electrical and optical characterization of pure and doped poly (vinyl alcohol) (PVA) polymer electrolyte films. Int J Polym Mater 56:579–591

    Article  CAS  Google Scholar 

  36. Alexandre P, Elena M, Matthieu C, Jean MT, Palacin MR (2012) In search of an optimized electrolyte for Na-ion batteries. Energy Environ Sci 5:8572

    Article  Google Scholar 

  37. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacin MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3:22–42

    Article  CAS  Google Scholar 

  38. Amrtha B, Jonas H, Anna KD, Jurgen J, Philipp A (2014) Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7 CoO2. Phys Chem Chem Phys 16:1987

    Article  Google Scholar 

  39. Hebbar V, Bhajantri RF, Naik J (2017) Physico-chemical properties of bismuth nitrate filled PVA-LiClO4 composites for energy storage applications. J Mater Sci Mater Electron 28:5827–5839

    Article  CAS  Google Scholar 

  40. Naik J, Bhajantri RF, Sheela T, Rathod SG (2016) Role of ZrO2 on physico-chemical properties of PVA/NaClO4 composites for energy storage applications. Polym Compos. https://doi.org/10.1002/pc.24063

    Article  Google Scholar 

  41. Moses E, Andre W, Ellen IT (2013) A novel method for measuring the effective conductivity and the contact resistance of porous electrodes for lithium-ion batteries. Electrochem Commun 34:130–133

    Article  Google Scholar 

  42. Schantz S (1991) On the ion association at low salt concentrations in polymer electrolytes; a Raman study of NaCF3SO3 and LiClO4 dissolved in poly (propylene oxide). J Chem Phys 94:6296

    Article  CAS  Google Scholar 

  43. Pitchai JV, Bijan D, Dilip KH (2001) A study on the solvation phenomena of some sodium salts in 1,2-dimethoxyethane from conductance, viscosity, ultrasonic velocity, and FT-Raman spectral measurements. J Phys Chem A 105(24):5960–5964

    Article  Google Scholar 

  44. Jayakumar S, Ananthapadmanabhan PV, Perumal K, Thiyagarajan TK, Mishra SC, Su LT, Tok AIY, Guo J (2011) Characterization of nano-crystalline ZrO2 synthesized via reactive plasma processing. Mater Sci Eng B 176:894–899

    Article  CAS  Google Scholar 

  45. Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S (2009) FTIR, FT Raman spectra and molecular structural confirmation of ionized. Indian J Pure Appl Phys 47:12–18

    CAS  Google Scholar 

  46. Sareen S, Nagaraja GK, Jagadish N, Bhajanthri RF (2017) Development and characterization study of silk fibre reinforced poly(vinyl alcohol) composites. Int J Plast Technol 21(1):108–122

    Article  Google Scholar 

  47. Shadpour M, Leila M (2014) Improvement of the interactions between modified ZrO2 and poly(amide-imide) matrix by using unique biosafe diacid as a monomer and coupling agent. Polym-Plast Technol Eng 53:1574–1582

    Article  Google Scholar 

  48. Xi Z, Xingru Y, Qingliang H, Huige W, Jun L, Jiang G, Hongbo G, Jingfang Y, Jingjing L, Daowei D, Luyi S, Suying W, Zhanhu G (2015) Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl Mater Interfaces 7:6125–6138

    Article  Google Scholar 

  49. Vidyashree H, Bhajantri RF, Jagadish N, Sunil GR (2016) Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies. Mater Res Express 3:075301

    Article  Google Scholar 

  50. Liew CW, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the super capacitors. Int J Hydrogen Energy 40:852–862

    Article  CAS  Google Scholar 

  51. Bo J, Juan S, Rufang P, Yuanjie S, Bisheng T, Shijin C, Haishan D (2012) Synthesis, characterization, thermal stability and sensitivity properties of the new energetic polymer through the azidoacetylation of poly(vinyl alcohol). Polym Degrad Stab 97:473–480

    Article  Google Scholar 

  52. Haigang Y, Shoubin X, Yuanqing S, Jianling Z, Long J, Yi D (2014) Study of the thermal decomposition behavior of poly(vinyl alcohol) with NaHSO4. J Macromol Sci B 53:1059–1073

    Article  Google Scholar 

  53. Broido A (1969) A simple, sensitive graphical method of treating thermo-gravimetric analysis data. J Polym Sci A-2 7:1761–1773

    Article  CAS  Google Scholar 

  54. Karthika JS, Vishalakshi B, Naik J (2016) Gellan gum graft polyaniline, an electrical conducting biopolymer. Int J Biol Macromol 82:61–67

    Article  CAS  Google Scholar 

  55. Rajendran S, Uma T (2000) Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes. Ionics 6:288–293

    Article  CAS  Google Scholar 

  56. Gustav EK, Daniel B (2017) Li-ion batteries using electrolyte based on mixtures of poly(vinyl alcohol) and lithium bis(trifluoro methane) sulfonamide salt. Electrochemica acta 246:208–212

    Article  Google Scholar 

  57. Genova FKM, Selvasekarpandian S, Vijaya N, Sivadevi S, Premalatha M, Karthikeyan S (2017) Lithium ion conducting polymer electrolyte based on PVA-PAN doped with lithium triflate. Ionics 23(10):2727–2734

    Article  Google Scholar 

  58. Haung YF, Zhang MQ, Rong MZ, Ruan WH (2017) To immobilize poly ethylene glycol-borate/lithium fluoride in graphene oxide/polyvinyl alcohol for synthesizing new polymer electrolyte membrane of lithium ion batteries. Express Polym Lett 11(1):35–46

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to USIC, Karnatak University, Dharwad, for FT Raman, TGA, and AFM facilities.

Funding

One of the authors, Vidyashree Hebbar, received UGC-UPE Research fellowship (KU/Sch/UGC-UPE/2014-15/890) from Karnatak University, Dharwad. This study received financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, research projects SR/FTP/PS-011/2010 and SB/EMEQ-089/2013, and UGC, New Delhi, SAP-CAS Phase-II (F.530/9/CAS-II/2015(SAP-I) research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Bhajantri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, J., Bhajantri, R.F., Hebbar, V. et al. Influence of ZrO2 filler on physico-chemical properties of PVA/NaClO4 polymer composite electrolytes. Adv Compos Hybrid Mater 1, 518–529 (2018). https://doi.org/10.1007/s42114-018-0030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0030-9

Keywords

Navigation