Timing of Readiness Potentials Reflect a Decision-making Process in the Human Brain

Abstract

Decision-making in two-alternative forced choice tasks has several underlying components including stimulus encoding, perceptual categorization, response selection, and response execution. Sequential sampling models of decision-making are based on an evidence accumulation process to a decision boundary. Animal and human studies have focused on perceptual categorization and provide evidence linking brain signals in parietal cortex to the evidence accumulation process. In this exploratory study, we use a task where the dominant contribution to response time is response selection and model the response time data with the drift-diffusion model. EEG measurement during the task show that the readiness potential (RP) recorded over motor areas has timing consistent with the evidence accumulation process. The duration of the RP predicts decision-making time, the duration of evidence accumulation, suggesting that the RP partly reflects an evidence accumulation process for response selection in the motor system. Thus, evidence accumulation may be a neural implementation of decision-making processes in both perceptual and motor systems. The contributions of perceptual categorization and response selection to evidence accumulation processes in decision-making tasks can be potentially evaluated by examining the timing of perceptual and motor EEG signals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alexander, P., Schlegel, A., Sinnott-Armstrong, W., Roskies, A. L., Wheatley, T., & Tse, P. U. (2016). Readiness potentials driven by non-motoric processes. Consciousness and Cognition, 39, 38–47. https://doi.org/10.1016/j.concog.2015.11.011.

    Article  PubMed  Google Scholar 

  2. Azizian, A., Freitas, A. L., Watson, T. D., & Squires, N. K. (2006). Electrophysiological correlates of categorization: P300 amplitude as index of target similarity. Biological Psychology, 71(3), 278–288. https://doi.org/10.1016/j.biopsycho.2005.05.002.

    Article  PubMed  Google Scholar 

  3. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178. https://doi.org/10.1016/j.cogpsych.2007.12.002.

    Article  PubMed  Google Scholar 

  4. Buc Calderon, C., Verguts, T., & Gevers, W. (2015). Losing the boundary: cognition biases action well after action selection. Journal of Experimental Psychology: General, 144(4), 737–743. https://doi.org/10.1037/xge0000087.

    Article  Google Scholar 

  5. Burle, B., Vidal, F., Tandonnet, C., & Hasbroucq, T. (2004). Physiological evidence for response inhibition in choice reaction time tasks. Brain and Cognition, 56(2 SPEC. ISS.), 153–164. https://doi.org/10.1016/j.bandc.2004.06.004.

  6. Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple alternatives. Nature Neuroscience, 11(6), 693–702. https://doi.org/10.1038/nn.2123.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Deng, S., Winter, W., Thorpe, S., & Srinivasan, R. (2012). Improved surface Laplacian estimates of cortical potential using realistic models of head geometry. IEEE Transactions on Biomedical Engineering, 59(11), 2979–2985. https://doi.org/10.1109/TBME.2012.2183638.

    Article  PubMed  Google Scholar 

  8. Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain. The Annals of Mathematical Statistics, 41(1), 214–226. https://doi.org/10.1214/AOMS/1177697203.

    Article  Google Scholar 

  9. Dotan, D., Meyniel, F., & Dehaene, S. (2018). On-line confidence monitoring during decision making. Cognition, 171, 112–121. https://doi.org/10.1016/j.cognition.2017.11.001.

    Article  PubMed  Google Scholar 

  10. Drugowitsch, J., Moreno-Bote, R. N., Churchland, A. K., Shadlen, M. N., & Pouget, A. (2012). The cost of accumulating evidence in perceptual decision making. Journal of Neuroscience, 32(11), 3612–3628. https://doi.org/10.1523/JNEUROSCI.4010-11.2012.

    Article  PubMed  Google Scholar 

  11. Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology, 14(5), 456–467. https://doi.org/10.1111/j.1469-8986.1977.tb01312.x.

    Article  PubMed  Google Scholar 

  12. Eimer, M. (1998). The lateralized readiness potential as an on-line measure of central response activation processes. Behavior Research Methods, Instruments, & Computers, 30(1), 146–156. https://doi.org/10.3758/BF03209424.

    Article  Google Scholar 

  13. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Chapmna and Hall/CRC.

  14. Gluth, S., Rieskamp, J., & Büchel, C. (2013). Classic EEG motor potentials track the emergence of value-based decisions. NeuroImage, 79, 394–403. https://doi.org/10.1016/j.neuroimage.2013.05.005.

    Article  PubMed  Google Scholar 

  15. Huk, A. C., & Shadlen, M. N. (2005). Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. Journal of Neuroscience, 25(45), 10420–10436. https://doi.org/10.1523/JNEUROSCI.4684-04.2005.

    Article  PubMed  Google Scholar 

  16. JASP Team (2020). JASP (Version 0.13.1) [Computer software]

  17. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572.

    Article  Google Scholar 

  18. Kelly, S. P., & O’Connell, R. G. (2013). Internal and external influences on the rate of sensory evidence accumulation in the human brain. Journal of Neuroscience, 33(50), 19434–19441. https://doi.org/10.1523/JNEUROSCI.3355-13.2013.

    Article  PubMed  Google Scholar 

  19. Kim, J. N., & Shadlen, M. N. (1999). Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience, 2(2), 176–185. https://doi.org/10.1038/5739.

    Article  PubMed  Google Scholar 

  20. Kotchoubey, B., & Lang, S. (2001). Event-related potentials in an auditory semantic oddball task in humans. Neuroscience Letters, 310(2–3), 93–96. https://doi.org/10.1016/S0304-3940(01)02057-2.

    Article  PubMed  Google Scholar 

  21. Kutas, M., Mccarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the p300 as a measure of stimulus evaluation time. Science, 197(4305), 792–795. https://doi.org/10.1126/science.887923.

    Article  PubMed  Google Scholar 

  22. Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: a practical course. Cambridge University Press. https://doi.org/10.1017/CBO9781139087759.

  23. Leuthold, H., Sommer, W., & Ulrich, R. (1996). Partial advance information and response preparation: inferences from the lateralized readiness potential. Journal of Experimental Psychology: General, 125(3), 307–323. https://doi.org/10.1037/0096-3445.125.3.307.

    Article  Google Scholar 

  24. Leuthold, H., Sommer, W., & Ulrich, R. (2004). Preparing for action: Inferences from CNV and LRP. Journal of Psychophysiology, 18(2–3), 77–88. https://doi.org/10.1027/0269-8803.18.23.77.

    Article  Google Scholar 

  25. Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious of a freely voluntary act. Brain, 106, 623–642. https://doi.org/10.1093/brain/106.3.623.

    Article  PubMed  Google Scholar 

  26. Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40(1), 77–105. https://doi.org/10.1007/BF02291481.

    Article  Google Scholar 

  27. Liu, C. C., & Aitkin, M. (2008). Bayes factors: prior sensitivity and model generalizability. Journal of Mathematical Psychology, 52(6), 362–375. https://doi.org/10.1016/j.jmp.2008.03.002.

    Article  Google Scholar 

  28. Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage, 2(2), 89–101. https://doi.org/10.1006/nimg.1995.1012.

    Article  PubMed  Google Scholar 

  29. Miller, J., Ulrich, R., & Rinkenauer, G. (1999). Effects of stimulus intensity on the lateralized readiness potential. Journal of Experimental Psychology: Human Perception and Performance, 25(5), 1454–1471. https://doi.org/10.1037/0096-1523.25.5.1454.

    Article  Google Scholar 

  30. Mulder, M. J., van Maanen, L., & Forstmann, B. U. (2014). Perceptual decision neurosciences-a model-based review. Neuroscience, (277), 872–884. https://doi.org/10.1016/j.neuroscience.2014.07.031.

  31. Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG (2nd ed.). New York: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195050387.001.0001.

    Google Scholar 

  32. Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differences in attention influence perceptual decision making. Frontiers in Psychology, 6, 1–13. https://doi.org/10.3389/fpsyg.2015.00018.

    Article  Google Scholar 

  33. Nunez, M. D., Nunez, P. L., & Srinivasan, R. (2016). Electroencephalography (EEG): neurophysics, experimental methods, and signal processing. In H. Ombao, M. Linquist, W. Thompson, & J. Aston (Eds.), Handbook of neuroimaging data analysis (pp. 175–197). Chapman & Hall/CRC. https://doi.org/10.13140/rg.2.2.12706.63687.

  34. Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017). How attention influences perceptual decision making: single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117–130. https://doi.org/10.1016/j.jmp.2016.03.003.

    Article  PubMed  Google Scholar 

  35. Nunez, M. D., Gosai, A., Vandekerckhove, J., & Srinivasan, R. (2019a). The latency of a visual evoked potential tracks the onset of decision making. NeuroImage, 197, 93–108. https://doi.org/10.1016/j.neuroimage.2019.04.052.

    Article  PubMed  Google Scholar 

  36. Nunez, P. L., Nunez, M. D., & Srinivasan, R. (2019b). Multi-scale neural sources of EEG: genuine, equivalent, and representative. A tutorial review. Brain Topography, 32, 193–214. https://doi.org/10.1007/s10548-019-00701-3.

    Article  PubMed  Google Scholar 

  37. O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience, 15(12), 1729–1735. https://doi.org/10.1038/nn.3248.

    Article  PubMed  Google Scholar 

  38. O’Connell, R. G., Shadlen, M. N., Wong-Lin, K. F., & Kelly, S. P. (2018). Bridging neural and computational viewpoints on perceptual decision-making. Trends in Neurosciences, 14(11), 838–852. https://doi.org/10.1016/j.tins.2018.06.005.

    Article  Google Scholar 

  39. O’Shea, J., Johansen-Berg, H., Trief, D., Göbel, S., & Rushworth, M. F. S. (2007). Functionally specific reorganization in human premotor cortex. Neuron, 54(3), 479–490. https://doi.org/10.1016/j.neuron.2007.04.021.

    Article  PubMed  Google Scholar 

  40. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4.

    Article  Google Scholar 

  41. Osman, A., Moore, C. M., & Ulrich, R. (1995). Bisecting RT with lateralized readiness potentials: precue effects after LRP onset. Acta Psychologica, 90(1–3), 111–127. https://doi.org/10.1016/0001-6918(95)00029-T.

    Article  Google Scholar 

  42. Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147–154. https://doi.org/10.7150/ijms.2.147.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Penfield, W. N., & Rasmussen, T.(1950). The cerebral cortex of man. By Wilder Penfield and Theodore Rasmussen. The Macmillan Company, New York, N.Y. 1950. 248 pp. https://doi.org/10.1002/ajpa.1330110318

  44. Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. Journal of Neuroscience, 26(35), 8965–8975. https://doi.org/10.1523/JNEUROSCI.1655-06.2006.

    Article  PubMed  Google Scholar 

  45. Philiastides, M. G., Heekeren, H. R., & Sajda, P. (2014). Human scalp potentials reflect a mixture of decision- related signals during perceptual choices. Journal of Neuroscience, 34(50), 16877–16889. https://doi.org/10.1523/JNEUROSCI.3012-14.2014.

    Article  PubMed  Google Scholar 

  46. Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing DSC. (Vienna, Austria. ISSN 1609-395X).

  47. Polich, J., Ellerson, P. C., & Cohen, J. (1996). P300, stimulus intensity, modality, and probability. International Journal of Psychophysiology, 23(1–2), 55–62. https://doi.org/10.1016/0167-8760(96)00028-1.

    Article  PubMed  Google Scholar 

  48. Rangelov, D., & Mattingley, J. B. (2020). Evidence accumulation during perceptual decision-making is sensitive to the dynamics of attentional selection. NeuroImage, 117093, 117093. https://doi.org/10.1016/j.neuroimage.2020.117093.

    Article  Google Scholar 

  49. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. https://doi.org/10.1037/0033-295X.85.2.59.

    Article  Google Scholar 

  50. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ratcliff, R., Philiastides, M. G., & Sajda, P. (2009). Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6539–6544. https://doi.org/10.1073/pnas.0812589106.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: current issues and history. Trends in Cognitive Sciences, 20(4), 260–281. https://doi.org/10.1016/j.tics.2016.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461(7261), 263–266. https://doi.org/10.1038/nature08275.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rohrbaugh, J. W., & Gaillard, A. W. K. (1983). Sensory and motor aspects of the contingent negative variation. Advances in Psychology, 10(C), 269–310. https://doi.org/10.1016/S0166-4115(08)62044-0.

    Article  Google Scholar 

  55. Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475–9489. https://doi.org/10.1523/jneurosci.22-21-09475.2002.

    Article  PubMed  Google Scholar 

  56. Ross, S. M. (2014). Introduction to probability models. Academic Press.

  57. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. https://doi.org/10.1016/j.jmp.2012.08.001.

    Article  Google Scholar 

  58. Rungratsameetaweemana, N., Itthipuripat, S., Salazar, A., & Serences, J. T. (2018). Expectations do not alter early sensory processing during perceptual decision-making. Journal of Neuroscience, 38(24), 5632–5648. https://doi.org/10.1523/JNEUROSCI.3638-17.2018.

    Article  PubMed  Google Scholar 

  59. Schall, J. D. (2003). Neural correlates of decision processes: neural and mental chronometry. Current Opinion in Neurobiology, 13, 182–186. https://doi.org/10.1016/S0959-4388(03)00039-4.

    Article  PubMed  Google Scholar 

  60. Schurger, A., Sitt, J. D., & Dehaene, S. (2012). An accumulator model for spontaneous neural activity prior to self-initiated movement. Proceedings of the National Academy of Sciences of the United States of America, 109(42), E2904–E2913. https://doi.org/10.1073/pnas.1210467109.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using covert response activation to test latent assumptions of formal decision-making models in humans. Journal of Neuroscience, 35(28), 10371–10385. https://doi.org/10.1523/JNEUROSCI.0078-15.2015.

    Article  PubMed  Google Scholar 

  62. Shadlen, M. N., & Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80(2), 791–806. https://doi.org/10.1016/j.neuron.2013.10.047.

    Article  PubMed  Google Scholar 

  63. Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clinical Neurophysiology, 117(11), 2341–2356. https://doi.org/10.1016/j.clinph.2006.04.025.

    Article  PubMed  Google Scholar 

  64. Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27, 161–168. https://doi.org/10.1016/j.tins.2004.01.006.

    Article  PubMed  Google Scholar 

  65. Stone, M. (1960). Models for choice-reaction time. Psychometrika, 25(3), 251–260. https://doi.org/10.1007/BF02289729.

    Article  Google Scholar 

  66. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522. https://doi.org/10.1038/381520a0.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Turner, B. M., Van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive abstractions through neuroimaging: the neural drift diffusion model. Psychological Review, 122(2), 312–336. https://doi.org/10.1037/a0038894.

    Article  PubMed  Google Scholar 

  68. Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65–79. https://doi.org/10.1016/j.jmp.2016.01.001.

    Article  PubMed  Google Scholar 

  69. Twomey, D. M., Murphy, P. R., Kelly, S. P., & O’Connell, R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. European Journal of Neuroscience, 42(1), 1636–1643. https://doi.org/10.1111/ejn.12936.

    Article  Google Scholar 

  70. Ulrich, R., Leuthold, H., & Sommer, W. (1998). Motor programming of response force and movement direction. Psychophysiology, 35(6), 721–728. https://doi.org/10.1017/S0048577298970615.

    Article  PubMed  Google Scholar 

  71. Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550–592. https://doi.org/10.1037/0033-295X.108.3.550.

    Article  PubMed  Google Scholar 

  72. van Boxtel, G. J. M., & Böcker, K. B. E. (2004). Cortical measures of anticipation. Journal of Psychophysiology, 18, 61–76. https://doi.org/10.1027/0269-8803.18.23.61.

    Article  Google Scholar 

  73. van Ravenzwaaij, D., Provost, A., & Brown, S. D. (2017). A confirmatory approach for integrating neural and behavioral data into a single model. Journal of Mathematical Psychology, 76, 131–141. https://doi.org/10.1016/j.jmp.2016.04.005.

    Article  Google Scholar 

  74. Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response times. Psychological Methods, 16(1), 44–62. https://doi.org/10.1037/a0021765.

    Article  PubMed  Google Scholar 

  75. Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: an empirical validation. Memory and Cognition, 32(7), 1206–1220. https://doi.org/10.3758/BF03196893.

    Article  PubMed  Google Scholar 

  76. Wabersich, D., & Vandekerckhove, J. (2014). Extending JAGS: a tutorial on adding custom distributions to JAGS (with a diffusion model example). Behavior Research Methods, 46(1), 15–28. https://doi.org/10.3758/s13428-013-0369-3.

    Article  PubMed  Google Scholar 

  77. Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: a tutorial on the Savage-Dickey method. Cognitive Psychology, 60, 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001.

    Article  PubMed  Google Scholar 

  78. Weindel, G., Anders, R., Alario, F.-X., & Burle B. (2020). Assessing model-based inferences in decision making with single-trial response time decomposition. PsyArXiv https://doi.org/10.31234/osf.io/kc26f.

Download references

Acknowledgments

Kiana Scambray is thanked for her help with data analysis in studies related to this paper. Jennifer Wu and Vu Le are thanked for their help on task design and construction of splint apparatus to record responses for this paper.

Data and code availability

Artifact-correct EEG data is available upon request to the corresponding author: mdnunez1@uci.edu MATLAB and JAGS analysis code are available on https://osf.io/7r6af/ and in the following repository https://github.com/mdnunez/RPDecision (as of July 2020).

Funding

This research was supported by grants from the NSF to JV and RS (1658303 and 1850849), grants from the NIH to JMC (K99HD091375 and T32AR047752) and SC (K24HD074722), and a grant from the University of California, Irvine Institute for Clinical and Translational Science (UL1-TR000153).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael D. Nunez.

Ethics declarations

This study was approved by the University of California, Irvine Institutional Review Board. Each subject provided written informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(TEX 448 bytes)

ESM 2

(TEX 620 bytes)

ESM 3

(PDF 100 kb)

ESM 4

(TEX 2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lui, K.K., Nunez, M.D., Cassidy, J.M. et al. Timing of Readiness Potentials Reflect a Decision-making Process in the Human Brain. Comput Brain Behav (2020). https://doi.org/10.1007/s42113-020-00097-5

Download citation

Keywords

  • Decision-making
  • Electroencephalography
  • Readiness potential
  • Motor preparation
  • Perceptual categorization
  • Response selection