Skip to main content
Log in

Approximation of the state variables of Navier’s differential equation in transient dynamic problems using finite element method based on complex Fourier shape functions

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this research, the analysis of 2D transient elastodynamic problems is performed using a reformulation of finite element method based on new complex Fourier shape functions, which are able to satisfy exponential and trigonometric function fields in addition to polynomial ones unlike classic Lagrange shape functions. Another superiority of these shape functions over classic Lagrange ones is their ability to obtain much better results using fewer degrees of freedom. Moreover, Runge phenomenon does not occur in the proposed shape functions when high degrees of freedom using equispaced elements are used, unlike classic Lagrange ones. In addition, the approximation of all kinds of surfaces, such as smooth and folded ones, is done perfectly by complex Fourier shape functions. In the end, six numerical examples are provided to show the efficiency and robustness of the suggested method. To do so, its results are compared with the classic Lagrange ones and analytical solutions (if available).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Arruda, M. R. T., & Castro, L. M. S. (2012). Structural dynamic analysis using hybrid and mixed finite element models. Finite Elements in Analysis and Design, 57, 43–54.

    Article  MathSciNet  Google Scholar 

  • Bahrami, S., Shirmohammadi, F., & Saadatpour, M. M. (2017). Spectral finite element method for solving dynamic response of plates subjected to moving loads and axial forces. Asian Journal of Civil Engineering, 18(7), 1025–1040.

    Google Scholar 

  • Boroomand, B., & Mossaiby, F. (2006). Dynamic solution of unbounded domains using finite element method: discrete Green’s functions in frequency domain. International Journal for Numerical Methods in Engineering, 67(11), 1491–1530.

    Article  MathSciNet  MATH  Google Scholar 

  • Casadei, F., Rimoli, J. J., & Ruzzene, M. (2016). Multiscale finite element analysis of wave propagation in periodic solids. Finite Elements in Analysis and Design, 108, 81–95.

    Article  MATH  Google Scholar 

  • de Miranda, S., Molari, L., & Ubertini, F. (2008). A consistent approach for mixed stress finite element formulations in linear elastodynamics. Computer Methods in Applied Mechanics and Engineering, 197(13), 1376–1388.

    Article  MATH  Google Scholar 

  • Dominguez, J. (1993). Boundary elements in dynamics. London: Computational Mechanics Publications, Southampton, Elsevier Applied Science.

    MATH  Google Scholar 

  • Farmani, S., Ghaeini-Hessaroeyeh, M., & Hamzehei Javaran, S. (2018). The improvement of numerical modeling in the solution of incompressible viscous flow problems using finite element method based on spherical Hankel shape functions. International Journal for Numerical Methods in Fluids. https://doi.org/10.1002/fld.4482.

    Google Scholar 

  • Hamzeh Javaran, S., Khaji, N., & Moharrami, H. (2011a). A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis. Engineering Analysis with Boundary Elements, 35(1), 85–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamzeh Javaran, S., Khaji, N., & Noorzad, A. (2011b). First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. Acta Mechanica, 218(3–4), 247–258.

    Article  MATH  Google Scholar 

  • Hamzehei Javaran, S., & Khaji, N. (2012). Inverse multiquadric (IMQ) function as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. In Paper presented at the 15th world conference on earthquake engineering, Lisboa, Portugal.

  • Hamzehei Javaran, S., & Khaji, N. (2014). Dynamic analysis of plane elasticity with new complex Fourier radial basis functions in the dual reciprocity boundary element method. Applied Mathematical Modelling, 38(14), 3641–3651.

    Article  MathSciNet  Google Scholar 

  • Hamzehei Javaran, S., & Shojaee, S. (2017). The solution of elastostatic and dynamic problems using the boundary element method based on spherical Hankel element framework. International Journal for Numerical Methods in Engineering, 112(13), 2067–2086.

    Article  MathSciNet  Google Scholar 

  • Hashemi, S. M., & Roach, A. (2006). A dynamic finite element for vibration analysis of a cable and wire ropes. Asian Journal of Civil Engineering, 7(5), 487–500.

    MATH  Google Scholar 

  • Idesman, A. V. (2007). Solution of linear elastodynamics problems with space–time finite elements on structured and unstructured meshes. Computer Methods in Applied Mechanics and Engineering, 196(9), 1787–1815.

    Article  MATH  Google Scholar 

  • Kaveh, A., & Nasab, E. N. (2009). A four-node quadrilateral element for finite element analysis via an efficient force method. Asian Journal of Civil Engineering, 10(3), 283–306.

    Google Scholar 

  • Khaji, N., Habibi, M., & Mirhashemian, P. (2009). Modeling transient elastodynamic problems using spectral element method. Asian Journal of Civil Engineering, 10(4), 361–380.

    Google Scholar 

  • Khaji, N., & Hamzehei Javaran, S. (2013). New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method. Engineering Analysis with Boundary Elements, 37(2), 260–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohnehpooshi, O., Noorzaei, J., Jaafar, M. S., Abdulrazeg, A. A., & Raizal Saifulnaz, M. R. (2010). Three dimensional finite element modeling of reinforced concrete beams, using Lagrangian and truss-linkage elements. Asian Journal of Civil Engineering, 11(1), 71–82.

    Google Scholar 

  • Loureiro, F. S., & Mansur, W. J. (2009). An efficient hybrid time-Laplace domain method for elastodynamic analysis based on the explicit Green’s approach. International Journal of Solids and Structures, 46(16), 3093–3102.

    Article  MathSciNet  MATH  Google Scholar 

  • Malakiyeh, M. M., Shojae, S., & Hamzehei Javaran, S. (2017). Insight into an implicit time integration method based on Bezier curve and third-order Bernstein basis function for structural dynamics. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-017-0001-4.

    Google Scholar 

  • Malakiyeh, M. M., Shojaee, S., & Hamzehei Javaran, S. (2018). Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function. Computers & Structures, 194, 15–31.

    Article  Google Scholar 

  • Panda, S., & Barik, M. (2017). Large deflection of arbitrary thin plates using superparametric finite element. Asian Journal of Civil Engineering, 18(2), 207–234.

    Google Scholar 

  • Priya, M., Greeshma, S., & Suganya, K. N. (2015). Finite element analysis of slab-column joint under lateral loading. Asian Journal of Civil Engineering, 16(2), 291–300.

    Google Scholar 

  • Provatidis, C. G. (2006). Transient elastodynamic analysis of two-dimensional structures using Coons-patch macroelements. International Journal of Solids and Structures, 43(22), 6688–6706.

    Article  MATH  Google Scholar 

  • Rashed, Y. F. (2002a). BEM for dynamic analysis using compact supported radial basis functions. Computers & Structures, 80(16), 1351–1367.

    Article  MathSciNet  Google Scholar 

  • Rashed, Y. F. (2002b). Transient dynamic boundary element analysis using Gaussian-based mass matrix. Engineering Analysis with Boundary Elements, 26(3), 265–279.

    Article  MATH  Google Scholar 

  • Samaan, M. F., & Rashed, Y. F. (2007). BEM for transient 2D elastodynamics using multiquadric functions. International Journal of Solids and Structures, 44(25), 8517–8531.

    Article  MATH  Google Scholar 

  • Wang, J. G., & Liu, G. R. (2002). On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering, 191(23), 2611–2630.

    Article  MathSciNet  MATH  Google Scholar 

  • Zakian, P., & Khaji, N. (2016). Spectral finite element simulation of seismic wave propagation and fault dislocation in elastic media. Asian Journal of Civil Engineering, 17(8), 1189–1213.

    Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: solid mechanics (Vol. 2). Oxford: Butterworth-Heinemann.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Hamzehei-Javaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzehei-Javaran, S. Approximation of the state variables of Navier’s differential equation in transient dynamic problems using finite element method based on complex Fourier shape functions. Asian J Civ Eng 19, 431–450 (2018). https://doi.org/10.1007/s42107-018-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-018-0035-2

Keywords

Navigation