Skip to main content
Log in

Key parameters influencing performance and failure modes for interaction soil–pile–structure system under lateral loading

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The behavior of the interaction soil–pile–structure under lateral loads is a topic not fully investigated in the literature. However, soil–pile–superstructure interaction largely affects the design forces in columns and piles. In contrast, fixed base assumption cannot capture soil structure interaction effect. In this study, the effects of the lateral capacity of interaction soil–pile–structure (ISPS) system under lateral loads have been investigated. The lateral capacity of ISPS system can be obtained by pushover analysis. The influence of vertical loads, pile diameter, longitudinal steel ratio, length of pile and type of soil on the lateral response of piles installed in three types of sandy soil are brought out in this paper through nonlinear static analysis and pile behavior in these conditions is investigated and characterized via: lateral capacity, spectral capacity, performance point, position of plastic hinge, over-strength factor, ductility and the response modification factors. The results indicate that the lateral capacity and spectral capacity are affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Anastasopoulos, I., Georgarakos, P., Georgiannou, V., Drosos, V., & Kourkoulis, R. (2010). Seismic performance of bar-mat reinforced-soil retaining wall: shaking table testing versus numerical analysis with modified kinematic hardening constitutive model. Soil Dynamics and Earthquake Engineering, 30, 1089–1105.

    Article  Google Scholar 

  • ATC. (1996). Seismic evaluation and retrofit of concrete buildings—volume 1 (ATC-40). Report No. SSC 96-01. Redwood City: Applied Technology Council.

    Google Scholar 

  • Badoni, D. & Makris, N. (1995). Nonlinear response of single piles under lateral inertial and seismic loads. Soil Dynamics and Earthquake Engineering, 15, 29–43.

  • Chiou, J. S., and Chen, C. H. (2010). Displacement ductility capacity of fixed-head piles. Proceedings of 5th International Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics, Missouri University of Science and Technology, Rolla, MO, Paper No. 9–10.

  • Chiou, J. S., Tsai, Y. C., & Chen, C. H. (2012). Investigating influencing factors of the ductility capacity of a fixed-head reinforced concrete pile in homogeneous clay. Journal of Mechanics, 28(3), 489–498.

    Article  Google Scholar 

  • Chiou, J. S., Yang, H. H., & Chen, C. H. (2009). Use of plastic hinge model in nonlinear pushover analysis of a pile. Journal of Geotechnical and Geoenvironmental Engineering, 135(9), 1341–1346.

    Article  Google Scholar 

  • Clough, R. W., Bensuka, K. L., & Lin, T. Y. (1966). FHA, Study of Seismic Design Criteria for High Rise Building, Washington D.C.U.S, Federal Housing Administration, HUD TS-3.

  • Elnashai, A. S., & Mwafy, A. M. (2002). Calibration of force reduction factors of RC buildings. Journal of Earthquake Engineering, 6(2), 239–273.

    Google Scholar 

  • Elnashai, A. S., & Di Sarno, L. (2008). Fundamentals of Earthquake Engineering. New Jersey: Wiley.

    Book  Google Scholar 

  • El-Naggar M. H, Novak, M. (1996). Nonlinear analysis for dynamic lateral pile response. Soil Dynamics and Earthquake Engineering, 15(4), 223–244.

  • FEMA-356. (1997). Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC.

  • Gerolymos, N. (2012). A macro-element model for nonlinear static and dynamic response of piles. Technical report for PEVE 2008 research project (contract number 65/1694). Laboratory of Soil Mechanics, NTUA.

  • Giannakos, S. (2013). Contribution to the static and dynamic lateral response of piles (Doctoral dissertation, National Technical University of Athens, 2013).

  • Guin, J., & Banerjee, P. K. (1998). Coupled soil–pile–structure interaction analysis under seismic excitation. Journal of the Structural Engineering. American Society of Civil Engineers, 124, 434–444.

    Google Scholar 

  • Hussien, M. N., Tobita, T., Iai, S., & Rollins, K. M. (2012). Vertical load effect on the lateral pile group resistance 522 in sand response. International Journal of Geomechanics and Geoengineering, 7(4), 263–282.

  • Kampitsis, A. E., Giannakos, S., Gerolymos, N., & Sapountzakis, E. J. (2015). Soil–pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering Structures, 99, 319–333.

    Article  Google Scholar 

  • Karthigeyan, S., Ramakrishna, V. V. G. S. T., & Rajagopal, K. (2006). Influence of vertical load on the lateral response of piles in sand. Computers and Geotechnics, 33(2), 121–131.

    Article  Google Scholar 

  • Karthigeyan, S., Ramakrishna, V. V. G. S. T., & Rajagopal, K. (2007). Numerical investigation of the effect of vertical load on the lateral response of piles. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 512–521.

    Article  Google Scholar 

  • Khodair, Y., & Abdel-Mohti, A. (2014). Numerical analysis of soil–pile interaction under axial and lateral loads. International Journal of Concrete Structures and Materials, 8(3), 239–249.

    Article  Google Scholar 

  • Makris, N. & Gazetas, G. (1992). Dynamic Pile-Soil- Pile Interacion Part II. Lateral and Seismic Response. Earthquake Engineering & Structural Dynamics, 21(2), 145–162.

  • Matlock, H. (1970). Correlations for Design of Laterally Loaded Piles in Soft Clay. Presented at the Second Annual Offshore Technology Conference, Houston, Texas, Vol 1, pp 577–588.

  • Matlock, H., Foo, S. H. C., Bryant, L. M. (1978). Simulation of lateral pile behavior under earthquake motion. Proceedings of the Specialty Conference on Earthquake Engineering and Soil Dynamics, ASCE (pp. 600–619) Pasadena.

  • Mazzolani, F. M., & Piluso, V. (1996). Theory and design of seismic resistant steel frames. Spon: E & FN.

    Book  Google Scholar 

  • Nogami, T. (1983). Dynamic group effect in axial responses of grouped piles. Journal of Geotechnical Engineering Division, ASCE, 109(2), 228–243.

    Article  Google Scholar 

  • Park, R., & Paulay, T. (1975). Reinforced concrete structures. NY: Wiley.

    Book  Google Scholar 

  • Ramin, K., & Fereidoonfar, M. (2015). Finite element modeling and nonlinear analysis for seismic assessment of off-diagonal steel braced RC frame. International Journal of Concrete Structures and Materials, 9(1), 89–118.

    Article  Google Scholar 

  • Reese, L. C., Cox, W. R. & Koop, F. D. (1974). Field testing and analysis of laterally loaded piles in sand. Proceedings of the VI Annual Offshore Technology Conference, Houston, Texas, 2(OTC 2080): 473–485.

  • SAP2000 Version 8. (2002). Basic analysis reference, computers and structures, Inc., Berkeley.

  • Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress–strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Journal, 79, 13–27.

    Google Scholar 

  • Yingcai, H. (2002). Seismic response of tall building considering soil–pile–structure interaction quake engineering and engineering. Vibration, 1, 57–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gasmi Houda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houda, G., Tayeb, B. & Yahiaoui, D. Key parameters influencing performance and failure modes for interaction soil–pile–structure system under lateral loading. Asian J Civ Eng 19, 355–373 (2018). https://doi.org/10.1007/s42107-018-0033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-018-0033-4

Keywords

Navigation