Asian Journal of Civil Engineering

, Volume 19, Issue 3, pp 309–317 | Cite as

Effect of the uncertainty on the formulated seismic behavior of RC buildings to a given earthquake

  • S. Dorbani
  • M. Badaoui
  • D. Benouar
Original Paper


This paper presents a stochastic analysis of expressions linking the reinforced concrete (RC) buildings maximum displacements to their natural period and the epicentral distances. Where, low- and medium-rise reinforced concrete buildings, are tested under the effect of records collected during the Boumerdes earthquake (Algeria, May 21st, 2003) at different epicentral distances. First, the expressions linking building maximum displacement and interstory drift to the building natural period and epicentral distance are derived. Then, using Monte Carlo simulation, the effect of the uncertainty of the chosen parameters on the confidence intervals of the lateral displacement and interstory drift statistics is studied, where the natural period and the epicentral distance are considered as random variables with a log-normal distribution. The findings denote that the derived expressions are less influenced by fundamental period uncertainty than the that of the epicentral distance. A good accuracy in the established formulations is reflected by the small width of the confidence intervals of the both analyzed responses.


Stochastic RC building Natural period Epicentral distance Uncertainty Log-normal variables 


  1. Badaoui, M. (2008). «Influence de l’hétérogénéité géologique et mécanique sur le comportement des sols multicouches » , Thèse de Doctorat. Alger: E.N.P.Google Scholar
  2. Badaoui, M., Berrah, M. K., Mébarki, A. (2010). Depth to bedrock randomness effect on the design spectra in the city of Algiers (Algeria). Engineering Structures, 32(1), 590–599.CrossRefGoogle Scholar
  3. Batou, A. (2008). “Identification des forces stochastiques appliquées à un système dynamique non linéaire en utilisant un modèle numérique incertain et des réponses expérimentales. Thèse de doctorat: Université Marne la Valée.Google Scholar
  4. Bommer, J. J., & Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96(6), 1967–1977.CrossRefGoogle Scholar
  5. CGS. (2003). RPA99. Algérie: Centre National de Génie Parasismique.Google Scholar
  6. Chopra, A. K., & Goel, R. K. (2000). Building period formulas for estimating seismic displacements. EERI Earthquake Spectra, 16(2), 533–536.CrossRefGoogle Scholar
  7. Davenport, A. G., & Hill-Carroll, P. (1986). Damping in tall buildings: its variability and treatment in design. In Building motion in wind, Proc. ASCE Convention, Seattle, WA.Google Scholar
  8. Dorbani, S. (2014). Etude déterministe et analyse probabiliste des réponses de structures en BA à un séisme donné». USTHB: Thèse de doctorat.Google Scholar
  9. Dorbani, S., Badaoui, M., & Benouar, D. (2013). Structural seismic response versus epicentral distance and natural period: the case study of Boumerdes (Algeria) earthquake. Structural Engineering and Mechanics, 48(3), 2013.CrossRefGoogle Scholar
  10. Dorbani, S., Badaoui, M., Benouar, D. (2015). Impact of natural period and epicentral distance on storey lateral displacements. World Academy of Science, Engineering and Technology. In: International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering Vol: 9, No: 8.Google Scholar
  11. Gidaris, I., Taflanidis, A. (2012). Design of fluid viscous dampers for optimal life cycle cost. In: World conference on earthquake engineering, Lisbon, PortugalGoogle Scholar
  12. Gidaris, I., Taflanidis, A., Mavroeidis, G.P. (2014). Multiobjective formulation for the life-cycle cost based design of fluid viscous damper. In: E. Caetano, P. Ribeiro, G. Müller (Eds.), Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, Cunha, ISSN: 2311-9020; ISBN: 978-972-752-165-4.Google Scholar
  13. Gilles, D., McClure, G., & Chouinard, L. E. (2011). Uncertainty in fundamental period estimates leads to inaccurate design seismic loads. Revue Canadienne de Génie Civil, 38(8), 870–880. Scholar
  14. Haviland, R. (1976). A study of uncertainties in the fundamental translational periods and damping values for real buildings. Cambridge: MIT Reports.Google Scholar
  15. Hong, H. P., & Jiang, J. (2004). Ratio between inelastic and elastic responses with uncertain structural properties. Canadian Journal of Civil Engineering, 31(4), 703–711.CrossRefGoogle Scholar
  16. Laouami, N., Slimani, A., Bouhadad, Y., Chatelain, J. L., & Nour, A. (2006). Evidence for fault-related directionality and localized site effects from strong motion recordings of the 2003 Boumerdes (Algeria) earthquake: consequences on damage distribution and the Algerian seismic code. Soil Dynamics and Earthquake Engineering, 26(2006), 991–1003.CrossRefGoogle Scholar
  17. Lindeburg, M. R., & MacMullin, K. M. (2014). Seismic design of building structures: a professional’s introduction to earthquake forces and design details (11th ed.). Hyderabad: Professional Publications. (SEIS11P).Google Scholar
  18. Mahmoudi, M. (2009). Determining the maximum lateral displacement due to sever earthquakes without using nonlinear analysis. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, World Academy of Science, Engineering and Technology, 26(2), 134–139.Google Scholar
  19. Mehanny, S. S. F. (2012). Are theoretically calculated periods of vibration for skeletal structures error-free? Earthquakes and Structures, 3(1), 17–35.CrossRefGoogle Scholar
  20. Pan American Health Organization (PAHO). (2000). Principles of disaster mitigation in health facilities. Washington: PAHO.Google Scholar
  21. Papadrakakis, M., Fragiadakis, M., & Lagaros, N. D. (2013). Computational methods in earthquake engineering (2nd ed.). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  22. Rahman, A., Masrur, A. A., & Mamun, M. R. (2012). Drift analysis due to earthquake load on tall structures. Journal of Civil Engineering and Construction Technology, 4(5), 154–158.Google Scholar
  23. Searer, G. R., Freeman, S. A. (2004). Design drift requirements for long-period structures. In: 13th world conference on Earthquake Engineering Vancouver, B. C., Canada August 1–6, 2004 Paper No. 3292.Google Scholar
  24. Thacker, B.H. (1996). Probabilistic finite element methods for transient analysis of nonlinear continua. PhD. Thesis, University of Texas, Austin.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Built Environment Lab. (LBE), Faculty of Civil EngineeringUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
  2. 2.Construction Supply and Services Integrated (CSSI)Rungis ComplexeFrance

Personalised recommendations