Rain-Fed Rice Yield Fluctuation to Climatic Anomalies in Bangladesh

Abstract

To examine the rain-fed Aman rice yield fluctuation due to climatic anomalies overtimes in Bangladesh, we used climate-induced yield index (CIYI), ensemble empirical mode decomposition (EEMD), step-wise multiple regression, isotopic signature, wavelet transform coherence (WTC) and random forest (RF) model. In this work, daily multiple source climatic data which were collected between 1980 and 2017, from 18 weather stations and five atmospheric circulation indices were used for this purpose. The key findings were as follows; by employing principal component analysis (PCA), six temporal variability modes were identified as six corresponding sub-regions with various Aman rice CIYI fluctuations. The Aman rice CIYI in different sub-regions represented a noteworthy 3–4-year quasi-oscillation using the EEMD. The key climate variables (KCVs) including the potential evapotranspiration and cloud cover in September, the minimum temperature in August, and precipitation in July, August, and October were the best rice yield prediction signals in these sub-regions. The results suggest that Aman rice yield could likely decline by 33.59%, and 3.37% in the southwestern and southeastern regions, respectively, if KCV increased by 1 °C or 1%. The RF model suggests that the Indian Ocean Dipole (IOD) significantly influenced the rice yield. Isotopic signatures were employed to confirm the fluctuation and anti-amount effect during the Aman rice-growing period in Bangladesh. The results obtained in this study could be used as a guideline for sustainable mitigation and adaptation measures in managing agro-meteorological hazards in Bangladesh.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adarsh, S., & Reddy, M. J. (2016). Multiscale characterization of streamflow and suspended sediment concentration data using Hilbert-Huang transform and time dependent intrinsic correlation analysis. Modeling Earth Systems and Environment, 2(4), 1–17.

    Google Scholar 

  2. Ahmed, M. K., Alam, M. S., Yousuf, A. H. M., & Islam, M. M. (2017). A long-term trend in precipitation of different spatial regions of Bangladesh and its teleconnections with El Nino/southern oscillation and Indian Ocean dipole. Theoretical Applied Climatology, 129(1–2), 473–486.

    Article  Google Scholar 

  3. Alizadeh, F., Roushangar, K., & Adamowski, J. (2019). Investigating monthly precipitation variability using a multiscale approach based on ensemble empirical mode decomposition. Paddy and Water Environment, 17(4), 741–759.

    Article  Google Scholar 

  4. Amin, M., Zhang, J., & Yang, M. (2015). Effects of climate change on the yield and cropping area of major food crops: a case of Bangladesh. Sustainability, 7(1), 898–915.

    Article  Google Scholar 

  5. Ara, I., Lewis, M., & Ostendorf, B. (2016). Spatio-temporal analysis of the impact of climate, cropping intensity and means of irrigation: an assessment on rice yield determinants in Bangladesh. Agriculture & Food Security, 5(1), 12.

    Article  Google Scholar 

  6. Ashok, K., Behera, S.K., Rao, S.A., Weng, H. and Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112(C11)

  7. Auffhammer, M., Ramanathan, V., & Vincent, J. R. (2012). Climate change, the monsoon, and rice yield in India. Climatic Change, 111(2), 411–424.

    Article  Google Scholar 

  8. Banglapedia. (2003). National encyclopedia of Bangladesh. Dhaka: Asiatic Society of Bangladesh.

    Google Scholar 

  9. Basak, J. K., Ali, M. A., Islam, M. N., & Rashid, M. A. (2010). Assessment of the effect of climate change on boro rice production in Bangladesh using DSSAT model. Journal of Civil Engineering (IEB), 38(2), 95–108.

    Google Scholar 

  10. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  11. Capra, A., & Scicolone, B. (2012). Spatiotemporal variability of drought on a short–medium time scale in the Calabria Region (Southern Italy). Theoretical Applied Climatology, 110(3), 471–488.

    Article  Google Scholar 

  12. Challinor, A. J., et al. (2014). A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change, 4, 287–291.

    Article  Google Scholar 

  13. Chen, Y. Z., Li, G. and C., Li, Q. L., (2016). Analysis of spatial distribution evolution and determinants of rapeseed production in China. Journal of Hunan Agricultural University (Social Sciences) 17(2), 009–015 (in Chinese with English abstract)

  14. Connolly, D. (2004). Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23(3–4), 279–302.

    Google Scholar 

  15. Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.

    CAS  PubMed  Article  Google Scholar 

  16. Dubache, G., Ogwang, B. A., Ongoma, V., & Islam, A. R. M. T. (2019). The effect of Indian Ocean on Ethiopian seasonal rainfall. Meteorology and Atmospheric Physics, 131(6), 1753–1761. https://doi.org/10.1007/s00703-019-00667-8.

    Article  Google Scholar 

  17. Endo, N., Matsumoto, J., Hayashi, T., Terao, T., Murata, F., Kiguchi, M., et al. (2015). Trends in precipitation characteristics in Bangladesh from 1950 to 2008. SOLA, 11, 113–117. https://doi.org/10.2151/sola.2015-027.

    Article  Google Scholar 

  18. Fang, S. B. (2011). Exploration of method for discrimination between trend crop yield and climatic fluctuant yield. Journal of Nature Disasters, 6, 13–18. ((in Chinese)).

    Google Scholar 

  19. Guo, A., Chang, J., Wang, Y., Huang, Q., Guo, Z., & Zhou, S. (2018). Bivariate frequency analysis of flood and extreme precipitation under changing environment: case study in catchments of the Loess Plateau, China. Stochastic Environmental Research and Risk Assessment, 32(7), 2057–2074.

    Article  Google Scholar 

  20. Huang, J., Islam, A. R. M. T., Zhang, F., & Hu, Z. (2017). Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China. International Journal of Biometeorology, 61(10), 1863–1872.

    PubMed  Article  Google Scholar 

  21. Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., et al. (2019). Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. European Journal of Agronomy, 102, 1–13.

    Article  Google Scholar 

  22. Huang, J., Zhou, H., Zheng, F., & Li, Y. (2020). Responses of yield fluctuation of winter oilseed rape to climate anomalies in south China at provincial Scale. International Journal of Plant Production. https://doi.org/10.1007/s42106-020-00102-8.

    Article  Google Scholar 

  23. Huang, J., Zhou, L., Zhang, F., et al. (2021). Responses of yield variability of summer maize in Henan province, north China, to large-scale atmospheric circulation anomalies. Theoretical Applied Climatology. https://doi.org/10.1007/s00704-020-03504-w.

    Article  Google Scholar 

  24. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2014: the synthesis report of the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Islam, A. R. M. T., Shen, S., Hu, Z., & Rahman, M. A. (2017). Drought hazard evaluation in Boro paddy cultivated areas of western Bangladesh at current and future climate change conditions, advances in meteorology. Advance Meteorology. https://doi.org/10.1155/2017/3514381.

    Article  Google Scholar 

  26. Islam, A. R. M. T., Shen, S., & Yang, S. (2018). Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh. Agricultural Water Management, 195, 58–70. https://doi.org/10.1016/j.agwat.2017.10.003037.

    Article  Google Scholar 

  27. Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z., & Chu, R. (2019). Assessing recent impacts of climate change on design water requirement of Boro rice season in Bangladesh. Theoretical Applied Climatology. https://doi.org/10.1007/s00704-019-02818-8.

    Article  Google Scholar 

  28. Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z., & Rahman, M. A. (2020). Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: a biophysical modeling approach. Sustainable Production and Consumption, 24, 121–138. https://doi.org/10.1016/j.spc.2020.07.005.

    Article  Google Scholar 

  29. Islam, A. R. M. T., Tasnuva, A., Sarker, S. C., Rahman, M. M., Mondal, M. S. H., & Islam, M. M. U. (2014). Drought in Northern Bangladesh: social, agroecological impact and local perception. International Journal of Ecosystem, 4(3), 150–158.

    Google Scholar 

  30. Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the US Great Plains agricultural production. Scientific Reports, 8(1), 1–18.

    Article  CAS  Google Scholar 

  31. Li, C., Wang, R., Xu, J., Luo, Y., Tan, M. L., & Jiang, Y. (2018). Analysis of meteorological dryness/wetness features for spring wheat production in the Ili River basin, China. International Journal of Biometeorology, 62(12), 2197–2204.

    PubMed  Article  Google Scholar 

  32. Li, T., et al. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21, 1328–1341.

    CAS  PubMed  Article  Google Scholar 

  33. Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R News, 2(3), 18–22.

    Google Scholar 

  34. Limsakul, A. (2019). Impacts of El Niño-Southern Oscillation (ENSO) on rice production in Thailand during 1961–2016. Environment and Natural Resources Journal, 17(4), 30–42.

    Article  Google Scholar 

  35. Liu, Y., Lu, H., Yang, S., & Wang, Y. (2016). Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Research, 191, 161–167.

    Article  Google Scholar 

  36. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610.

    CAS  PubMed  Article  Google Scholar 

  37. Pattanayak, A., & Kumar, K. S. K. (2014). Weather sensitivity of rice yield: evidence from India. Climate Change Economics, 5(4), 1450011.

    Article  Google Scholar 

  38. Polong, F., Chen, H., Sun, S., & Ongoma, V. (2019). Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin, Kenya. Theoretical and Applied Climatology, 138(1–2), 777–792.

    Article  Google Scholar 

  39. Quadir, D.A., (2007). The impact of climate variability on the yield of rain-fed rice of Bangladesh. SAARC Meteorolog. Research Centre (SMRC)

  40. Rahman, M. S., Azad, M. A. K., Hasanuzzaman, M., Salam, R., Islam, A. R. M. T., Rahman, M. M., & Hoque, M. M. M. (2021). How air quality and COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Science of the Total Environment, 762, 143161. https://doi.org/10.1016/j.scitotenv.2020.143161.

    CAS  Article  Google Scholar 

  41. Rahman, M. S., & Islam, A. R. M. T. (2019). Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Science of the Total Environment, 690, 370–387.

    CAS  Article  Google Scholar 

  42. Rahman, M. A., Kang, S., Nagabhatla, N., & Macnee, R. (2017). Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agriculture & Food Security, 6(1), 10.

    Article  Google Scholar 

  43. Rashid, H. E. (1991). Geography of Bangladesh. Dhaka: University Press.

    Google Scholar 

  44. Rashid, M.H. and Islam, M.S., (2007). Adaptation to climate change for sustainable development of Bangladesh agriculture. Bangladesh Country Paper. Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM), Beijing

  45. Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communication, 3, 1293.

    Article  CAS  Google Scholar 

  47. Rezaie-Balf, M., Maleki, N., Ki, S., et al. (2019). Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm. Energies, 12, 1416. https://doi.org/10.3390/en12081416.

    Article  Google Scholar 

  48. Roberts, M. G., Dawe, D., Falcon, W. P., & Naylor, R. L. (2009). El Niño-Southern Oscillation impacts on rice production in Luzon, the Philippines. Journal of Applied Meteorology and Climatology, 48(8), 1718–1724.

    Article  Google Scholar 

  49. Saha, T. R., & Quadir, D. A. (2016). Variability and trends of annual and seasonal thunderstorm frequency over Bangladesh. International Journal of Climatology, 36(14), 4651–4666.

    Article  Google Scholar 

  50. Salam, R., Islam, A. R. M. T., & Islam, S. (2019). Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh. Environment Development and Sustainability. https://doi.org/10.1007/s10668-019-00395-4.

    Article  Google Scholar 

  51. Salam, R., Islam, A. R. M. T., Shill, B. K., Alam, G. M. M., Hasanuzzaman, M., Hossain, M. M., et al. (2021). Nexus between vulnerability and adaptive capacity of drought-prone rural households in northern Bangladesh. Natural Hazards. https://doi.org/10.1007/s11069-020-03900-5.

    Article  Google Scholar 

  52. Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: an analysis of time series data. Agricultural Systems, 112, 11–16.

    Article  Google Scholar 

  53. Sarker, M. A. R., Alam, K., & Gow, J. (2014). Assessing the effects of climate change on rice yields: an econometric investigation using Bangladeshi panel data. Economic Analysis and Policy, 44(4), 405–416.

    Article  Google Scholar 

  54. Sarker, M. A. R., Alam, K., & Gow, J. (2017). Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. Renewable Agriculture and Food Systems. https://doi.org/10.1017/S1742170517000473.

    Article  Google Scholar 

  55. Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598.

    CAS  Article  Google Scholar 

  56. Selvaraju, R. (2003). Impact of El Niño–southern oscillation on Indian food grain production. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(2), 187–206.

    Article  Google Scholar 

  57. Shahid, S. (2010). Recent trends in the climate of Bangladesh. Clim. Res., 42, 185–193.

    Article  Google Scholar 

  58. Shahid, S., & Behrawan, H. (2008). Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46, 391–413. https://doi.org/10.1007/s11069-007-9191-5.

    Article  Google Scholar 

  59. Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics, 8(1), 25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Tian, C., Wang, L., Kaseke, K. F., & Bird, B. W. (2018). Stable isotope compositions ( δ2H, δ18O and δ17O) of rainfall and snowfall in the central United States. Scientific Reports, 8(6712), 1–15. https://doi.org/10.1038/s41598-018-25102-7.

    CAS  Article  Google Scholar 

  61. Wahiduzaman, M., Islam, A. R. M. T., Luo, J., Shahid, S., Uddin, M. J., Shimul, S. M., & Sattar, M. A. (2020). Trends and variabilities of thunderstorm days over Bangladesh on the ENSO and IOD timescales. Atmosphere, 11(11), 1176. https://doi.org/10.3390/atmos11111176.

    Article  Google Scholar 

  62. Wahiduzzaman, M. (2012). ENSO connection with monsoon rainfall over Bangladesh. Int J of Appl Sci Eng Res, 1(1), 26–38.

    Article  Google Scholar 

  63. Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R. P., et al. (2017). The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 3(8), 1–13.

    Google Scholar 

  64. WISER, (2018). Water isotope system for data analysis, visualization and electronic retrieval. https://nucleus.iaea.org/wiser

  65. Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A Mathematical, Physical and Engineering Sciences, 460(2046), 1597–1611.

    Article  Google Scholar 

  66. Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41.

    Article  Google Scholar 

  67. Xu, Y., Li, T., Shen, S., Xu, G., Islam, A. R. M. T., et al. (2020). Effects of cyclic variability in Pacific decadal oscillation on winter wheat production in China. International Journal of Climatology. https://doi.org/10.1002/joc.6956.

    Article  Google Scholar 

  68. Yamada, K., Masuma, T., Sakai, S., Seto, K., Ogusa, H., & Irizuki, T. (2016). Centennial-scale East Asian summer monsoon intensity based on δ18 O values in ostracode shells and its relationship to land-ocean air temperature gradients over the past 1700 years. Geology. https://doi.org/10.1130/G37535.1.

    Article  Google Scholar 

  69. Yu, W., Alam, M., Hassan, A., Khan, A. S., Ruane, A. C., Rosenzweig, C., et al. (2010). Bangladesh-Climate change risks and food security in Bangladesh. Washington: World Bank.

    Google Scholar 

  70. Zannat, F., Islam, A. R. M. T., & Rahman, M. A. (2019). Spatiotemporal variability of rainfall linked to ground water level under changing climate in northwestern region, Bangladesh. European Journal of Geosciences, 1(1), 35–56.

    Article  Google Scholar 

  71. Zhang, W., Jin, F. F., & Turner, A. (2014). Increasing autumn drought over southern China associated with ENSO regime shift. Geophysical Research Letters, 41(11), 4020–4026.

    Article  Google Scholar 

  72. Zhang, W., Li, H., Stuecker, M. F., Jin, F. F., & Turner, A. G. (2016). A new understanding of El Niño’s impact over East Asia: dominance of the ENSO combination mode. Journal of Climate, 29(12), 4347–4359.

    Article  Google Scholar 

  73. Zhao, C., Piao, S., Wang, X., Huang, Y., et al. (2016). Plausible rice yield losses under future climate warming. Nature Plants, 3, 16202. https://doi.org/10.1038/nplants.2016.202.

    Article  PubMed  Google Scholar 

  74. Zhao, J., Guo, J., & Mu, J. (2015). Exploring the relationships between climatic variables and climate-induced yield of spring maize in Northeast China. Agriculture, Ecosystems & Environment, 207, 79–90.

    Article  Google Scholar 

  75. Ziegler, A., & König, I. R. (2014). Mining data with random forests: current options for real-world applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(1), 55–63.

    Google Scholar 

  76. Zinat, M. R. M., Salam, R., Badhan, M. A., & Islam, A. R. M. T. (2020). Appraising drought hazard during Boro rice growing period in western Bangladesh. International Journal of Biometeorology., 64(10), 1697–1697. https://doi.org/10.1007/s00484-020-01949-2.

    Article  Google Scholar 

  77. Zubair, L. (2002). El Nino–southern oscillation influences on rice production in Sri Lanka. International Journal of Climatology, 22(2), 249–260.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Researchers Supporting Project number (RSP-2020/100), King Saud University, Riyadh, Saudi Arabia. We greatly acknowledge the Bangladesh Meteorological Department (BMD) for proving data for this study. We highly acknowledge the NCEP/NCAR and ECMWF ERA5 reanalysis dataset which used in this present study. We also highly thankful to Isotope Hydrology Division, Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh for shearing Experimental dataset in the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abu Reza Md. Towfiqul Islam.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghose, B., Islam, A.R.M.T., Islam, H.M.T. et al. Rain-Fed Rice Yield Fluctuation to Climatic Anomalies in Bangladesh. Int. J. Plant Prod. (2021). https://doi.org/10.1007/s42106-021-00131-x

Download citation

Keywords

  • Rice yields fluctuation
  • Climate-induced yield index
  • Isotope signatures
  • Random forest
  • Wavelet coherence