Sensor-Cloud based Precision Agriculture Approach for Intelligent Water Management

Abstract

Water deficits reduce plant growth. Moisture stress affects the development of plant organs, which in turn can have very profound effects on plant growth. Initiation and differentiation of vegetative and reproductive organs, as well as cell division and cell enlargement, are very sensitive to water stress. The size of the vegetative organs in part determines the yield of grain crops, and therefore the yield is often determined before heading or flowering. Factors that determine the size of plant vegetative organs are many, and they are interrelated in a complex manner. Environmental factors rank high among those that determine vegetative growth, and among these environmental factors, nitrogen, soil temperature, and soil water play key roles. In this paper, we present a sensor-cloud based precision agriculture for intelligent water management for effective productivity in agriculture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture,44(1), 71–91.

    Article  Google Scholar 

  2. Alchanatis, V., & Cohen, Y. (2016). Spectral and spatial methods of hyperspectral image analysis for estimation of biophysical and biochemical properties of agricultural crops. Hyperspectral remote sensing of vegetation (pp. 324–343). Boca Raton: CRC Press.

    Google Scholar 

  3. Apostol, S., Viau, A. A., Tremblay, N., Briantais, J. M., Prasher, S., Parent, L. E., et al. (2003). Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Canadian Journal of Remote Sensing,29(1), 57–65.

    Article  Google Scholar 

  4. Åstrand, B., & Baerveldt, A. J. (2002). An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous Robots,13(1), 21–35.

    Article  Google Scholar 

  5. Bakhsh, A., Jaynes, D. B., Colvin, T. S., & Kanwar, R. S. (2000). Spatio-temporal analysis of yield variability for a corn-soybean field in Iowa. Transactions of the ASAE,43, 31.

    Article  Google Scholar 

  6. Bastiaanssen, W. G., Molden, D. J., & Makin, I. W. (2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management,46(2), 137–155.

    Article  Google Scholar 

  7. Bauer, M. E., & Cipra, J. E. (1973). Identification of agricultural crops by computer processing of ERTS MSS data. LARS Technical Reports. Paper 20. http://docs.lib.purdue.edu/larstech/20. W. Lafayette: Purdue Univ.

  8. Bausch, W. C., & Duke, H. R. (1996). Remote sensing of plant nitrogen status in corn. Transactions of the ASAE,39(5), 1869–1875.

    Article  Google Scholar 

  9. Bhatti, A. U., Mulla, D. J., & Frazier, B. E. (1991). Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment,37(3), 181–191.

    Article  Google Scholar 

  10. Channe, H., Kothari, S., & Kadam, D. (2015). Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis. International Journal of Computer Technology & Applications,6(3), 374–382.

    Google Scholar 

  11. Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing,22(3), 229–242.

    Article  Google Scholar 

  12. Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture. Agronomy Journal,95(3), 455–471.

    Google Scholar 

  13. Crookston, R. K. (2006). A top 10 list of developments and issues impacting crop management and ecology during the past 50 years. Crop Science,46(5), 2253–2262.

    Article  Google Scholar 

  14. Ferrández-Pastor, F., García-Chamizo, J., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors,18(6), 1731.

    Article  Google Scholar 

  15. Karim, F., & Karim, F. (2017). Monitoring system using web of things in precision agriculture. Procedia Computer Science,110, 402–409.

    Article  Google Scholar 

  16. Lindgren, F., Geladi, P., & Wold, S. (1994). Kernel-based PLS regression; Cross-validation and applications to spectral data. Journal of Chemometrics,8(6), 377–389.

    CAS  Article  Google Scholar 

  17. Link, A., Panitzki, M., Reusch, S., & Robert, P. C. (2002, July). Hydro N-Sensor: Tractor-mounted remote sensing for variable nitrogen fertilization. In Proceedings of the 6th International Conference on Precision Agriculture (pp. 14–17). Madison, USA: ASA/CSSA/SSSA (published on CD).

  18. Link, A., & Reusch, S. (2006). Implementation of site-specific nitrogen application-Status and development of the YARA N-Sensor. In NJF seminar (Vol. 390, pp. 37–41).

  19. Long, D. S., Engel, R. E., & Siemens, M. C. (2008). Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agronomy Journal,100(2), 247–252.

    CAS  Article  Google Scholar 

  20. Mamo, M., Malzer, G. L., Mulla, D. J., Huggins, D. R., & Strock, J. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. Agronomy Journal,95(4), 958–964.

    Article  Google Scholar 

  21. Rao, R. N., & Sridhar, B. (2018). IoT based smart crop-field monitoring and automation irrigation system. In 2018 2nd International Conference on Inventive Systems and Control (ICISC) (pp. 478-483). IEEE.

  22. Reeta, R., Pushpavathi, V., Sanchana, R., & Shanmugapriya, V. (2018). A Deterministic Approach For Smart Agriculture Using Iot And Cloud. International Journal of Pure And Applied Mathematics,118(18), 2413–2424.

    Google Scholar 

  23. Suresh, P., & Koteeswaran, S. (2019). An Effective Novel IOT Framework for Water Irrigation System in Smart Precision Agriculture. International Journal of Innovative Technology and Exploring Engineering,8(6), 558–564. (ISSN: 2278-3075).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Jayalakshmi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayalakshmi, M., Gomathi, V. Sensor-Cloud based Precision Agriculture Approach for Intelligent Water Management. Int. J. Plant Prod. 14, 177–186 (2020). https://doi.org/10.1007/s42106-019-00077-1

Download citation

Keywords

  • Smart water management
  • Naive Bayes
  • Sensor cloud
  • Precision agriculture