Small area estimation of general parameters: Bayesian transformed spatial prediction approach

Abstract

For estimating area-specific parameters such as poverty indicators in a finite population, estimators based only on the area-specific samples have typically high variability due to small sample sizes, and model-based methods are recognized to be useful to increase the accuracy of the estimation by borrowing information from related areas. This article proposes an Bayesian approach to this problem based on random effects models. To address the non-normality of response variables and possible spatial correlations among geographically neighboring areas, we introduce random effects models with a parametric family of transformations and spatially correlated random area effects. We assign prior distributions on unknown parameters including transformation and spatial correlation parameters and provide an efficient posterior computation algorithm for estimation and inference for area-specific population parameters via Markov Chain Monte Carlo. We demonstrate the performance of the proposed methods together with existing methods through simulation and empirical studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data (2nd ed.). Boca Raton: Chapman & Hall.

    Google Scholar 

  2. Battese, G., Harter, R., & Fuller, W. (1988). An error-components model for prediction of county crop areas using survey and satellite data. Journal of the American Statistical Association, 83, 28–36.

    Article  Google Scholar 

  3. Chambers, R., Chandra, H., Salvati, N., & Tzavidis, N. (2014). Outliner robust small area estimation. Journal of the Royal Statistical Society Series B, 76, 47–69.

    Article  Google Scholar 

  4. Foster, J., Greer, J., & Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica, 52, 761–766.

    Article  Google Scholar 

  5. Hall, P., & Maiti, T. (2006). On parametric bootstrap methods for small area prediction. Journal of the Royal Statistical Society Series B, 68, 221–238.

    MathSciNet  Article  Google Scholar 

  6. Jiang, J., & Lahiri, P. (2006). Estimation of finite population domain means: A model-assisted empirical best prediction approach. Journal of the American Statistical Association, 101, 301–311.

    MathSciNet  Article  Google Scholar 

  7. Lahiri, P., & Mukherjee, K. (2007). On the design consistency property of hierarchical bayes estimators in finite population sampling. The Annals of Statistics, 35, 724–737.

    MathSciNet  Article  Google Scholar 

  8. Molina, I., & Marhuenda, Y. (2015). SAE: An R package for small area estimation. The R Journal, 7, 81–98.

    Article  Google Scholar 

  9. Molina, I., & Martin, N. (2018). Empirical best prediction under a nested error model with log transformation. The Annals of Statistics, 46, 1961–1993.

    MathSciNet  Article  Google Scholar 

  10. Molina, I., Nandram, B., & Rao, J. N. K. (2014). Small area estimation of general parameters with application to poverty indicators: A hierarchical bayes approach. The Annals of Applied Statistics, 8, 852–885.

    MathSciNet  Article  Google Scholar 

  11. Molina, I., & Rao, J. N. K. (2010). Small area estimation of poverty indicators. Canadian Journal of Statistics, 38, 369–385.

    MathSciNet  Article  Google Scholar 

  12. Pratesi, M., & Salvati, N. (2008). Small area estimation: The eblup estimator based on spatially correlated random area effects. Statistical Methods and Applications, 17, 113–141.

    MathSciNet  Article  Google Scholar 

  13. Pratesi, M., & Salvati, N. (2009). Small area estimation in the presence of correlated random area effects. Journal of Official Statistics, 25, 37–53.

    Google Scholar 

  14. Rao, J. N. K., & Molina, I. (2015). Small Area Estimation (2nd ed.). New York: Wiley.

    Google Scholar 

  15. Schmid, T., Tzavidis, N., Münnich, R., & Chambers, R. (2016). Outlier robust small-area estimation under spatial correlation. Scandinavian Journal of Statistics, 43, 806–826.

    MathSciNet  Article  Google Scholar 

  16. Slud, E., & Maiti, T. (2006). Mean-squared error estimation in transformed fay-herriot models. Journal of the Royal Statistical Society Series B, 68, 239–257.

    MathSciNet  Article  Google Scholar 

  17. Sugasawa, S., & Kubokawa, T. (2017). Transforming response values in small area prediction. Computational Statistics and Data Analysis, 114, 47–60.

    MathSciNet  Article  Google Scholar 

  18. Sugasawa, S., & Kubokawa, T. (2019). Adaptively transformed mixed model prediction of general finite population parameters. Scandinavian Journal of Statistics, 46, 1025–1046.

    MathSciNet  Article  Google Scholar 

  19. Yang, Z. L. (2006). A modified family of power transformations. Economics Letters, 92, 14–19.

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant-in-Aid for Japanese Society for Promotion of Science (KAKENHI) Grant numbers 18K12757.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shonosuke Sugasawa.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sugasawa, S. Small area estimation of general parameters: Bayesian transformed spatial prediction approach. Jpn J Stat Data Sci 3, 167–181 (2020). https://doi.org/10.1007/s42081-019-00067-7

Download citation

Keywords

  • Finite population
  • Markov Chain Monte Carlo
  • Random effect
  • Small area estimation
  • Spatial smoothing