Skip to main content
Log in

Mars orbit insertion via ballistic capture and aerobraking

  • Research Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2022

This article has been updated

Abstract

A novel Mars orbit insertion strategy that combines ballistic capture and aerobraking is presented. Mars ballistic capture orbits that neglect the aerodynamics are first generated, and are distilled from properly computed stable and unstable sets by using a pre-established method. A small periapsis maneuver is implemented at the first close encounter to better submit a post-capture orbit to the aerobraking process. An adhoc patching point marks the transition from ballistic capture to aerobraking, from which an exponential model simulating the Martian atmosphere and a box-wing satellite configuration are considered. A series of apoapsis trim maneuvers are then computed by targeting a prescribed pericenter dynamic pressure. The aerobraking duration is then estimated using a simplified two-body model. Yaw angle tuning cancels the inclination deflections owing to out-of-plane perturbation from the Sun. A philosophy combining in-plane and out-of-plane dynamics is proposed to simultaneously achieve the required semi-major axis and inclination. Numerical simulations indicate that the developed method is more efficient in terms of the fuel consumption, insertion safety, and flexibility when compared with other state-of-the-art insertion strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Battin, R. H. An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition. Reston, VA: AIAA, 1999.

    Book  Google Scholar 

  2. Esposito, P., Alwar, V., Demcak, S., Graat, E., Johnston, M., Mase, R. Mars global surveyor navigation and aerobraking at Mars. In: Proceedings of the 13th International Conference on Space Flight Dynamics, 1998: AAS 98-112.

  3. Topputo, F., Belbruno, E. Earth-Mars transfers with ballistic capture. Celestial Mechanics and Dynamical Astronomy, 2015, 121(4): 329–346.

    Article  MathSciNet  Google Scholar 

  4. Carrelli, D., O’Shaughnessy, D., Strikwerda, T., Kaidy, J., Prince, J., Powell, R. Autonomous aerobraking for low-cost interplanetary missions. Acta Astronautica, 2014, 93: 467–474.

    Article  Google Scholar 

  5. Genova, A. ORACLE: A mission concept to study Mars’ climate, surface and interior. Acta Astronautica, 2020, 166: 317–329.

    Article  Google Scholar 

  6. Spencer, D. A., Tolson, R. Aerobraking cost and risk decisions. Journal of Spacecraft and Rockets, 2007, 44(6): 1285–1293.

    Article  Google Scholar 

  7. Lyons, D. T., Beerer, J. G., Esposito, P., Johnston, M. D., Willcockson, W. H. Mars global surveyor: Aerobraking mission overview. Journal of Spacecraft and Rockets, 1999, 36(3): 307–313.

    Article  Google Scholar 

  8. Tolson, R. H., Dwyer, A. M., Hanna, J. L., Keating, G. M., George, B. E., Escalera, P. E., Werner, M. R. Application of accelerometer data to Mars odyssey aerobraking and atmospheric modeling. Journal of Spacecraft and Rockets, 2005, 42(3): 435–443.

    Article  Google Scholar 

  9. Mazarico, E., Zuber, M. T., Lemoine, F. G., Smith, D. E. Atmospheric density during the aerobraking of Mars odyssey from radio tracking data. Journal of Spacecraft and Rockets, 2007, 44(6): 1165–1171.

    Article  Google Scholar 

  10. Uesugi, K. Results of the MUSES-A “HITEN” mission. Advances in Space Research, 1996, 18(11): 69–72.

    Article  Google Scholar 

  11. Lyons, D. T., Saunders, R. S., Griffith, D. G. The Magellan Venus mapping mission: Aerobraking operations. Acta Astronautica, 1995, 35(9–11): 669–676.

    Article  Google Scholar 

  12. Serra, S. V., Bonnamy, O., Witasse, O., Camino, C. Venus express aerobraking. In: Proceedings of the 18th IFAC World Congress Proceedings, 2011: 715–720.

  13. Smith, J. C. Jr., Bell, J. L. 2001 Mars odyssey aerobraking. Journal of Spacecraft and Rockets, 2005, 42(3): 406–415.

    Article  Google Scholar 

  14. Graf, J. E., Zurek, R. W., Erickson, J. K., Jai, B., Johnston, M. D., de Paula, R. Status of Mars reconnaissance orbiter mission. Acta Astronautica, 2007, 61(1–6): 44–51.

    Article  Google Scholar 

  15. Renault, H., Sergent, N., Chevallier, M., Kutrowski, N., Bacchetta, A., Temperanza, D. ExoMars 2016, Orbiter module bus a GNC development update. CEAS Space Journal, 2015, 7(2): 105–118.

    Article  Google Scholar 

  16. Circi, C., Teofilatto, P. On the dynamics of weak stability boundary lunar transfers. Celestial Mechanics and Dynamical Astronomy, 2001, 79: 41–72.

    Article  Google Scholar 

  17. Circi, C. Properties of transit trajectory in the restricted three and four-body problem. Advances in Space Research, 2012, 49(10): 1506–1519.

    Article  Google Scholar 

  18. Jehn, R., Campagnola, S., García, D., Kemble, S. Low-thrust approach and gravitational capture at Mercury. In: Proceedings of the 18th International Symposium on Space Flights Dynamics, 2004: 487.

  19. Mingotti, G., Topputo, F., Bernelli-Zazzera, F. Earth-Mars transfers with ballistic escape and low-thrust capture. Celestial Mechanics and Dynamical Astronomy, 2011, 110(2): 169–188.

    Article  MathSciNet  Google Scholar 

  20. Luo, Z. F., Topputo, F., Bernelli-Zazzera, F., Tang, G. J. Constructing ballistic capture orbits in the real Solar System model. Celestial Mechanics and Dynamical Astronomy, 2014, 120(4): 433–450.

    Article  MathSciNet  Google Scholar 

  21. Fantino, E., Gómez, G., Masdemont, J. J., Ren, Y. A note on libration point orbits, temporary capture and low-energy transfers. Acta Astronautica, 2010, 67(9–10): 1038–1052.

    Article  Google Scholar 

  22. Luo, Z. F., Topputo, F. Analysis of ballistic capture in Sun-planet models. Advances in Space Research, 2015, 56(6): 1030–1041.

    Article  Google Scholar 

  23. Bokelmann, K. A., Russell, R. P. Halo orbit to science orbit captures at planetary moons. Acta Astronautica, 2017, 134: 141–151.

    Article  Google Scholar 

  24. Qi, Y., de Ruiter, A. Low-energy transfers to long-term capture in the Earth-Moon system. Acta Astronautica, 2018, 152: 836–849.

    Article  Google Scholar 

  25. Luo, Z. F. The role of the mass ratio in ballistic capture. Monthly Notices of the Royal Astronomical Society, 2020, 498(1): 1515–1529.

    Article  Google Scholar 

  26. Carletta, S., Pontani, M., Teofilatto, P. Dynamics of three-dimensional capture orbits from libration region analysis. Acta Astronautica, 2019, 165: 331–343.

    Article  Google Scholar 

  27. Belbruno, E. A., Miller, J. K. Sun-perturbed Earth-to-moon transfers with ballistic capture. Journal of Guidance Control and Dynamics, 1993, 16(4): 770–775.

    Article  Google Scholar 

  28. Camino, O., Alonso, M., Gestal, D., de Bruin, J., Rathsman, P., Kugelberg, J., Bodin, P., Ricken, S., Blake, R., Voss, P. P. et al. SMART-1 operations experience and lessons learnt. Acta Astronautica, 2006, 61(1–6): 203–222.

    Google Scholar 

  29. Hatch, S., Chung, M. K., Kangas, J., Long, S., Roncoli, R., Sweetser, T. Trans-lunar cruise trajectory design of GRAIL (gravity recovery and interior laboratory) mission. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, 2010: AIAA 20108384.

  30. Elliott, J., Alkalai, L. Lunette: A network of lunar landers for in situ geophysical science. Acta Astronautica, 2011, 68(7–8): 1201–1207.

    Article  Google Scholar 

  31. Schuster, A., Jehn, R. Influence of the Mercury gravity field on the orbit insertion strategy of BepiColombo. Aerospace Science and Technology, 2014, 39: 546–551.

    Article  Google Scholar 

  32. Carbone, A., Cinelli, M., Circi, C., Ortore, E. Observing Mercury by a quasi-propellantless mission. Celestial Mechanics and Dynamical Astronomy, 2020, 132: 8.

    Article  MathSciNet  Google Scholar 

  33. Hyeraci, N., Topputo, F. Method to design ballistic capture in the elliptic restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1814–1823.

    Article  Google Scholar 

  34. Archinal, B. A., A’Hearn, M. F., Bowell, E., Conrad, A., Consolmagno, G. J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J. L., Krasinsky, G. A. et al. Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celestial Mechanics and Dynamical Astronomy, 2011, 109: 101–135.

    Article  Google Scholar 

  35. Bertin, J. J. Hypersonic Aerothermodynamics. Washington, DC: AIAA, Inc., 1994.

    Book  Google Scholar 

  36. Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., Kuchynka, P. The Planetary and Lunar Ephemerides DE430 and DE431. IPN Progress Report 42-196, 2014.

  37. Circi, C., Teofilatto, P. Effect of planetary eccentricity on ballistic capture in the solar system. Celestial Mechanics and Dynamical Astronomy, 2005, 93(1–4): 69–86.

    Article  MathSciNet  Google Scholar 

  38. Luo, Z. F., Topputo, F. Capability of satellite-aided ballistic capture. Communications in Nonlinear Science and Numerical Simulation, 2017, 48: 211–223.

    Article  Google Scholar 

  39. Hibbard, K., Glaze, L., Prince, J. Aerobraking at Venus: A science and technology enabler. Acta Astronautica, 2012, 73: 137–143.

    Article  Google Scholar 

  40. Roy, A. E. Orbital Motion. Boca Raton: CRC Press, 2004.

    Book  Google Scholar 

  41. Hyeraci, N., Topputo, F. The role of true anomaly in ballistic capture. Celestial Mechanics and Dynamical Astronomy, 2013, 116(2): 175–193.

    Article  MathSciNet  Google Scholar 

  42. Zhou, C. H., Liu, L. Time needed to use aerobraking to insert planetary low orbiters. Journal of Spacecraft TT&C Technology, 2013, 32: 438–443. (in Chinese).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11602301), the Science and Technology Laboratory on Space Intelligent Control for National Defense (No. KGJZDSYS-2018-12), and the National Key R&D Program of China (No. 2019YFA0706601). We are grateful to Dr. Chen Zhang for supporting the numerical simulations and to Dr. Han-Lun Lei for providing helpful opinions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Fu Luo.

Additional information

Zongfu Luo was a visiting student of Politecnico di Milano during 2012–2014, and received his Ph.D. degree from National University of Defense University in 2015. Currently, he is an associate research fellow in Nanjing University. His current interests are spacecraft dynamics and control.

Francesco Topputo is an associate professor at the Department of Aerospace Science and Technology, Politecnico di Milano, where he received his Ph.D. degree. His core research activities involve spacecraft flight dynamics and control, interplanetary CubeSat mission and system design, autonomous guidance and navigation. In 2019, he became ERC laureate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, ZF., Topputo, F. Mars orbit insertion via ballistic capture and aerobraking. Astrodyn 5, 167–181 (2021). https://doi.org/10.1007/s42064-020-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-020-0095-4

Keywords

Navigation