Effect of b values and size of region of interest on apparent diffusion coefficient measurement and its reproducibility in liver diffusion-weighted MRI

Abstract

Objectives

To investigate the effect of b value and size of region of interest (ROI) on apparent diffusion coefficient (ADC) measurement and its reproducibility in liver diffusion-weighted imaging (DWI).

Methods

Thirty-six volunteers underwent liver DWI twice with b values of 0, 100, 500, and 800 s/mm2. ADCs were measured with ROI of 50 mm2 on ADC maps generated with different b values of (0, 100), (0, 500), (0, 800), (0, 100, 500), (0, 100, 800), (0, 500, 800), and (0, 100, 500, 800) s/mm2. ADCs from b values of (0, 800) s/mm2 were measured with 4 ROI sizes (50, 100, 200 and 300 mm2). ANOVA analysis was used to compare differences of ADCs among different ROI sizes and different combined b values. Bland–Altman method was used to assess reproducibility of ADC measurement.

Results

ADCs with larger ROI size were slightly higher than those with smaller one, while no statistical difference was found (P > 0.05). And reproducibility of ADC measurement with different ROI sizes was comparable (LOA 7.0–8.2% for right lobe, 14.15–17.4% for left lobe). ADCs statistically decreased with increased maximum b values (P < 0.05). ADC measurement achieved the best reproducible with maximum b value of 800 s/mm2 regardless of the number of b values.

Conclusions

The b values influence ADC measurement and its reproducibility, while the ROI sizes do not affect them. Two b values of (0, 800) s/mm2 and ROI of 50 mm2 are recommended for liver ADC measurement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  Google Scholar 

  2. 2.

    Zhou Y, Wang X, Xu C, et al. Mass-forming intrahepatic cholangiocarcinoma: can diffusion-weighted imaging predict microvascular invasion? J Magn Reson Imaging. 2019;50(1):315–24.

    Article  Google Scholar 

  3. 3.

    Rimola J, Forner A, Sapena V, et al. Performance of gadoxetic acid MRI and diffusion-weighted imaging for the diagnosis of early recurrence of hepatocellular carcinoma. Eur Radiol. 2019;30:186–94.

    Article  Google Scholar 

  4. 4.

    Jia Y, Cai H, Wang M, et al. Diffusion kurtosis MR imaging versus conventional diffusion-weighted imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules. Contrast Media Mol Imaging. 2019;2019:2030147.

    Article  Google Scholar 

  5. 5.

    Shin MK, Song JS, Hwang SB, et al. Liver fibrosis assessment with diffusion-weighted imaging: value of liver apparent diffusion coefficient normalization using the spleen as a reference organ. Diagnostics. 2019;9(3):107.

    CAS  Article  Google Scholar 

  6. 6.

    Tang Z, Zhang XY, Liu Z, et al. Quantitative analysis of diffusion weighted imaging to predict pathological good response to neoadjuvant chemoradiation for locally advanced rectal cancer. Radiother Oncol. 2019;132:100–8.

    Article  Google Scholar 

  7. 7.

    Kim SY, Lee SS, Byun JH, et al. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology. 2010;255(3):815–23.

    Article  Google Scholar 

  8. 8.

    Dale BM, Braithwaite AC, Boll DT, et al. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Investig Radiol. 2010;45(2):104–8.

    Article  Google Scholar 

  9. 9.

    Kwee TC, Takahara T, Koh DM, et al. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging. 2008;28(5):1141–8.

    Article  Google Scholar 

  10. 10.

    Chen L, Shen F, Li Z, et al. Diffusion-weighted imaging of rectal cancer on repeatability and cancer characterization: an effect of b value distribution study. Cancer Imaging. 2018;18(1):43.

    Article  Google Scholar 

  11. 11.

    Gourtsoyianni S, Papanikolaou N, Yarmenitis S, et al. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol. 2008;18(3):486–92.

    Article  Google Scholar 

  12. 12.

    Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology. 2008;246(3):812–22.

    Article  Google Scholar 

  13. 13.

    Kim SY, Lee SS, Park B, et al. Reproducibility of measurement of apparent diffusion coefficients of malignant hepatic tumors: effect of DWI techniques and calculation methods. J Magn Reson Imaging. 2012;36(5):1131–8.

    Article  Google Scholar 

  14. 14.

    Vaziri-Bozorg SM, Ghasemi-Esfe AR, Khalilzadeh O, et al. Diffusion-weighted magnetic resonance imaging for diagnosis of liver fibrosis and inflammation in chronic viral hepatitis: the performance of low or high b values and small or large regions of interest. Can Assoc Radiol J. 2012;63(4):304–11.

    Article  Google Scholar 

  15. 15.

    Bilgili MY. Reproductibility of apparent diffusion coefficients measurements in diffusion-weighted MRI of the abdomen with different b values. Eur J Radiol. 2012;81(9):2066–8.

    Article  Google Scholar 

  16. 16.

    Corona-Villalobos CP, Pan L, Halappa VG, et al. Agreement and reproducibility of apparent diffusion coefficient measurements of dual-b-value and multi-b-value diffusion-weighted magnetic resonance imaging at 1.5 tesla in phantom and in soft tissues of the abdomen. J Comput Assist Tomogr. 2013;37(1):46–51.

    Article  Google Scholar 

  17. 17.

    Larsen NE, Haack S, Larsen LP, et al. Quantitative liver ADC measurements using diffusion-weighted MRI at 3 tesla: evaluation of reproducibility and perfusion dependence using different techniques for respiratory compensation. MAGMA. 2013;26:431–42.

    Article  Google Scholar 

  18. 18.

    Erturk SM, Ichikawa T, Sano K, et al. Diffusion-weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (sense) and b value. J Comput Assist Tomogr. 2008;32(6):865–71.

    Article  Google Scholar 

  19. 19.

    Lewin M, Poujol-Robert A, Boelle PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis c. Hepatology. 2007;46(3):658–65.

    CAS  Article  Google Scholar 

  20. 20.

    Taouli B, Chouli M, Martin AJ, et al. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging. 2008;28(1):89–95.

    Article  Google Scholar 

  21. 21.

    Colagrande S, Pasquinelli F, Mazzoni LN, et al. MR-diffusion weighted imaging of healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient measurement. J Magn Reson Imaging. 2010;31(4):912–20.

    Article  Google Scholar 

  22. 22.

    Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47–66.

    Article  Google Scholar 

  23. 23.

    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

    CAS  Article  Google Scholar 

  24. 24.

    Busing KA, Kilian AK, Schaible T, et al. Reliability and validity of MR image lung volume measurement in fetuses with congenital diaphragmatic hernia and in vitro lung models. Radiology. 2008;246(2):553–61.

    Article  Google Scholar 

  25. 25.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    CAS  Article  Google Scholar 

  26. 26.

    Filipe JP, Curvo-Semedo L, Casalta-Lopes J, et al. Diffusion-weighted imaging of the liver: usefulness of ADC values in the differential diagnosis of focal lesions and effect of ROI methods on ADC measurements. Magma. 2013;26(3):303–12.

    CAS  Article  Google Scholar 

  27. 27.

    Bruegel M, Holzapfel K, Gaa J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol. 2008;18(3):477–85.

    Article  Google Scholar 

  28. 28.

    Chen X, Qin L, Pan D, et al. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology. 2014;271(1):113–25.

    Article  Google Scholar 

  29. 29.

    Murtz P, Flacke S, Traber F, et al. Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology. 2002;224(1):258–64.

    Article  Google Scholar 

  30. 30.

    Andreou A, Koh DM, Collins DJ, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol. 2013;23(2):428–34.

    CAS  Article  Google Scholar 

  31. 31.

    Wan Q, Deng YS, Lei Q, et al. Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol. 2019;29(3):1607–15.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huang Yucun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yucun, H., Liling, X., Zhi, C. et al. Effect of b values and size of region of interest on apparent diffusion coefficient measurement and its reproducibility in liver diffusion-weighted MRI. Chin J Acad Radiol (2021). https://doi.org/10.1007/s42058-021-00053-7

Download citation

Keywords

  • Liver diffusion-weighted imaging
  • Apparent diffusion coefficient
  • b values
  • Region of interest
  • Reproducibility