High signal liver focal lesions on DWI: the differential diagnostic value of morphological characteristics and ADC value

Abstract

Purpose

To explore the value of DWI morphological characteristics and ADC value in differentiating malignant and benign lesions of the liver at 3.0 T.

Materials and methods

In this study, 310 patients with the same number of liver lesions confirmed by histopathology with high signal on DWI were collected. For each lesion, two radiologists independently measured the ADC values and evaluated the DWI morphological characteristics. The differences of the quantitative and qualitative MRI features determined by the readers were assessed. The ADC values of the malignant and benign liver lesions were compared. Besides, Chi-square tests were used to compare the proportion of differences in the DWI morphological characteristics between malignant and benign liver lesions. ROC curve was used to evaluate the diagnostic efficacy of ADC value and DWI morphological features.

Results

No significant differences were observed in the quantitative and qualitative MRI features determined by the readers. The ADC values for malignant liver lesions were lower than those for benign lesions (statistically significant, P < 0.05). There was significant difference in the proportion of DWI morphological features between benign and malignant liver lesions. The proportion of morphological characteristics of ring and nodular high signal intensity was higher in malignant liver lesions. In benign lesions, the proportion of flaky and homogeneous high signal morphological features was higher. The AUC of DWI morphological features + ADC value was significantly higher than those of ADC value or DWI morphological features (P = 0.0277, P < 0.0001).

Conclusions

The combined application of DWI morphological features and ADC value is the most valuable in differentiating malignant and benign liver lesions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Gersten O, Wilmoth JR. The cancer transition in Japan since 1951. Demogr Res. 2002;7(5):271–306. https://doi.org/10.4054/DemRes.2002.7.5.

    Article  Google Scholar 

  2. 2.

    Bray F, Ferlay J, Soerjomataram I, et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  3. 3.

    Wei C, Tan J, Xu L, et al. Differential diagnosis between hepatic metastases and benign focal lesions using DWI with parallel acquisition technique: a meta-analysis. Tumour Biol. 2015;36(2):983–90. https://doi.org/10.1007/s13277-014-2663-9.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mannelli L, Bhargava P, Osman SF, et al. Diffusion-weighted imaging of the liver: a comprehensive review. Curr Prob Diagn Radiol. 2013;42(3):77–83. https://doi.org/10.1067/j.cpradiol.2012.07.001.

    Article  Google Scholar 

  5. 5.

    Guiu B, Cercueil JP. Liver diffusion-weighted MR imaging: the tower of Babel? Eur Radiol. 2011;21(3):463–7. https://doi.org/10.1007/s00330-010-2017-y.

    Article  PubMed  Google Scholar 

  6. 6.

    Ginat DT, Mangla R, Yeaney G, et al. Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density. AJR Am J Roentgenol. 2012;198(6):W597–601. https://doi.org/10.2214/AJR.11.7424.

    Article  PubMed  Google Scholar 

  7. 7.

    Kim S, Jain M, Harris AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology. 2009;251(3):796–807. https://doi.org/10.1148/radiol.2513080724.

    Article  PubMed  Google Scholar 

  8. 8.

    Sandrasegaran K, Sundaram CP, Ramaswamy R, et al. Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentqenol. 2010;194(2):438–45. https://doi.org/10.2214/AJR.09.3024.

    Article  Google Scholar 

  9. 9.

    Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257(1):135–43. https://doi.org/10.1148/radiol.10092396.

    Article  PubMed  Google Scholar 

  10. 10.

    Onur MR, Cicekci M, Kayali A, et al. The role of ADC measurement in differential diagnosis of focal hepatic lesions. Eur J Radiol. 2012;81(3):e171-176. https://doi.org/10.1016/j.ejrad.2011.01.116.

    Article  PubMed  Google Scholar 

  11. 11.

    Holzapfel K, Bruegel M, Eiber M, et al. Characterization of small (≤ 10 mm) focal liver lesions: value of respiratory-triggered echo-planar diffusion-weighted MR imaging. Eur J Radiol. 2010;76(1):89–95. https://doi.org/10.1016/j.ejrad.2009.05.014.

    Article  PubMed  Google Scholar 

  12. 12.

    Kaya B, Koc Z. Diffusion-weighted MRI and optimal b-value for characterization of liver lesions. Acta Radiol. 2014;55(5):532–42. https://doi.org/10.1177/0284185113502017.

    Article  PubMed  Google Scholar 

  13. 13.

    Park HJ, Kim SH, Jang KM, et al. Differentiating hepatic abscess from malignant mimickers: value of diffusion-weighted imaging with an emphasis on the periphery of the lesion. J Magn Reson Imaging. 2013;38(6):1333–41. https://doi.org/10.1002/jmri.24112.

    Article  PubMed  Google Scholar 

  14. 14.

    Karan B, Erbay G, Koc Z, et al. Utility of diffusion-weighted MRI to detect changes in liver diffusion in benign and malignant distal bile duct obstruction: the influence of choice of b-values. Can Assoc Radiol J. 2016;67(4):395–401. https://doi.org/10.1016/j.carj.2016.03.006.

    Article  PubMed  Google Scholar 

  15. 15.

    Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226(1):71–8. https://doi.org/10.1148/radiol.2261011904.

    Article  PubMed  Google Scholar 

  16. 16.

    Lee NK, Kim S, Kim DU, et al. Diffusion-weighted magnetic resonance imaging for non-neoplastic conditions in the hepatobiliary and pancreatic regions: pearls and potential pitfalls in imaging interpretation. Abdom Imaging. 2015;40(3):643–62. https://doi.org/10.1007/s00261-014-0235-5.

    Article  PubMed  Google Scholar 

  17. 17.

    Kudo M, Matsui O, Izumi N, et al. JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver Cancer Study Group of Japan. Liver Cancer. 2014;3(3–4):458–68. https://doi.org/10.1159/000343875.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43. https://doi.org/10.1016/j.jhep.2011.12.001.

    Article  Google Scholar 

  19. 19.

    Hardie AD, Naik M, Hecht EM, et al. Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol. 2010;20(6):1431–41. https://doi.org/10.1007/s00330-009-1695-9.

    Article  PubMed  Google Scholar 

  20. 20.

    Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47–66. https://doi.org/10.1148/radiol.09090021.

    Article  PubMed  Google Scholar 

  21. 21.

    Galea N, Cantisani V, Taouli B. Liver lesion detection and characterization: role of diffusion-weighted imaging. J Magn Reson Imaging. 2013;37(6):1260–76. https://doi.org/10.1002/jmri.23947.

    Article  PubMed  Google Scholar 

  22. 22.

    Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35. https://doi.org/10.2214/AJR.06.1403.

    Article  PubMed  Google Scholar 

  23. 23.

    Saito K, Tajima Y, Harada TL. Diffusion-weighted imaging of the liver: current applications. World J Radiol. 2016;8(11):857–67. https://doi.org/10.4329/wjr.v8.i11.857.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology. 2008;249(2):624–30. https://doi.org/10.1148/radiol.2492071681.

    Article  PubMed  Google Scholar 

  25. 25.

    Parsai A, Zerizer I, Roche O, et al. Assessment of diffusion-weighted imaging for characterizing focal liver lesions. Clin Imaging. 2015;39(2):278–84. https://doi.org/10.1016/j.clinimag.2014.09.016.

    Article  PubMed  Google Scholar 

  26. 26.

    Thoeny HC, De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol. 2007;17(6):1385–93. https://doi.org/10.1007/s00330-006-0547-0.

    Article  PubMed  Google Scholar 

  27. 27.

    Li X, Zhang K, Shi Y, et al. Correlations between the minimum and mean apparent diffusion coefficient values of hepatocellular carcinoma and tumor grade. J Magn Reson Imaging. 2016;44(6):1442–7. https://doi.org/10.1002/jmri.25323.

    Article  PubMed  Google Scholar 

  28. 28.

    Le Moigne F, Boussel L, Haquin A, et al. Grading of small hepatocellular carcinomas (≤2 cm): correlation between histology, T2 and diffusion-weighted imaging. Br J Radiol. 2014;87(141):20130763. https://doi.org/10.1259/bjr.20130763.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 81771785). The funders had no role in research design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huiyi Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sheng, F., Pan, J. et al. High signal liver focal lesions on DWI: the differential diagnostic value of morphological characteristics and ADC value. Chin J Acad Radiol (2021). https://doi.org/10.1007/s42058-021-00052-8

Download citation

Keywords

  • Liver lesion
  • Diffusion-weighted imaging
  • DWI
  • Magnetic resonance imaging
  • MRI
  • Morphological characteristics