Skip to main content

Advertisement

Log in

Spatio-temporal violent event prediction using Gaussian process regression

  • Research Article
  • Published:
Journal of Computational Social Science Aims and scope Submit manuscript

Abstract

Large volume, data-driven violent conflict research is now possible using publicly available data sets. This work analyzes the predictive ability of data-derived Gaussian process models compared to a generalized linear model. Societal violence is a highly nonlinear process and the available data sets have high dimensionality that yield observation totals in the hundreds of thousands to millions. These challenges make machine learning modeling difficult without significant dimensionality reduction. We develop a computationally intensive Gaussian process modeling approach that exploits the size and complexity of the violent conflict dataset to identify appropriate basis vectors for the model. We develop our models using gridded monthly violent event counts for sub-Saharan Africa from 1980 to 2012. Our resulting Gaussian process models modestly improve the accuracy and predictive ability of existing generalized linear models. Despite this improvement, the accurate prediction of violence in sub-Saharan Africa at a relatively fine resolution spatial grid of 1 \(^\circ\) latitude/longitude remains a challenging problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., & Pentland, A. (2014). Once upon a crime: Towards crime prediction from demographics and mobile data. In Proceedings of the 16th international conference on multimodal interaction, ICMI ’14 (pp. 427–434). ACM, New York. https://doi.org/10.1145/2663204.2663254.

  2. Carl Edward, R., & Williams, C. K. (2006). Gaussian processes for machine learning. Cambridge: MIT.

    Google Scholar 

  3. Damianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian processes. International Conference on Artificial Intelligence and Statistics, 31, 207–215. https://doi.org/10.1002/nme.1296.

    Google Scholar 

  4. Flaxman, S.R. (2014). A general approach to prediction and forecasting crime rates with Gaussian processes. Ph.D. thesis, Carnegie Mellon University.

  5. Flaxman, S.R., Wilson, A.G., Neill, D.B., Nickisch, H., Smola, A.J. (2015). Fast Kronecker inference in gaussian processes with non-gaussian likelihoods. In Proceedings of The 32nd international conference on machine learning (vol. 37, pp. 607–616).

  6. Gerber, M. S. (2014). Predicting crime using twitter and kernel density estimation. Decision Support Systems, 61, 115–125.

    Article  Google Scholar 

  7. Hegre, H., Metternich, N. W., Nygård, H. M., & Wucherpfennig, J. (2017). Forecasting in peace research. Journal of Peace Research, 54(2), 113–124. https://doi.org/10.1177/0022343317691330.

    Article  Google Scholar 

  8. O’Loughlin, J., Linke, A. M., & Witmer, F. D. (2014). Effects of temperature and precipitation variability on the risk of violence in sub-Saharan Africa, 1980–2012. Proceedings of the National Academy of Sciences, 111(47), 16712–16717.

    Article  Google Scholar 

  9. O’Loughlin, J., Witmer, F. D. W., Linke, A. M., Laing, A., Gettelman, A., & Dudhia, J. (2012). Climate variability and conflict risk in East Africa, 1990–2009. Proceedings of the National Academy of Sciences of the United States of America, 109(45), 18344–18349.

    Article  Google Scholar 

  10. Raleigh, C., Linke, A., Hegre, H., & Karlsen, J. (2010). Introducing ACLED: An armed conflict location and event dataset special data feature. Journal of Peace Research, 47(5), 651–660.

    Article  Google Scholar 

  11. Rasmussen, C. E., & Nickisch, H. (2010). Gaussian processes for machine learning (GPML) toolbox. Journal Machine Learning Research, 11, 3011–3015.

    Google Scholar 

  12. Salakhutdinov, R., & Hinton, G. (2008). Using deep belief nets to learn covariance kernels for Gaussian processes. Advances in Neural Information Processing Systems, 20(20), 1–8.

    Google Scholar 

  13. Salehyan, I., Hendrix, C. S., Hamner, J., Case, C., Linebarger, C., Stull, E., et al. (2012). Social conflict in Africa: A new database. International Interactions, 38(4), 503–511. https://doi.org/10.1080/03050629.2012.697426.

    Article  Google Scholar 

  14. Snelson, E., Ghahramani, Z.: Variable noise and dimensionality reduction for sparse Gaussian processes (2012). arxiv: 1206.6873.

  15. Sundberg, R., & Melander, E. (2013). Introducing the UCDP georeferenced event dataset. Journal of Peace Research, 50(4), 523–532. https://doi.org/10.1177/0022343313484347.

    Article  Google Scholar 

  16. Themner, L., & Wallensteen, P. (2013). Armed conflicts, 1946–2012. Journal of Peace Research, 51(4), 541–554. https://doi.org/10.1177/0022343314542076.

    Article  Google Scholar 

  17. Wang, T., Rudin, C., Wagner, D., & Sevieri, R. (2013). Learning to detect patterns of crime. Joint European conference on machine learning and knowledge discovery in databases (pp. 515–530). Berlin: Springer.

  18. Wilson, A., & Adams, R. (2013). Gaussian process kernels for pattern discovery and extrapolation. Proceedings of the 30th International Conference on Machine Learning, 28(3), 1067–1075.

  19. Wilson, A. G., Dann, C., & Nickisch, H. (2015). Thoughts on massively scalable Gaussian processes. EMNLP,. https://doi.org/10.7153/mia-18-96.

    Google Scholar 

  20. Wilson, A. G., & Nickisch, H. (2015). Kernel interpolation for scalable structured Gaussian processes (KISS-GP). International Conference on Machine Learning, 37, 1–19.

    Google Scholar 

  21. Witmer, F. D., Linke, A. M., O’Loughlin, J., Gettelman, A., & Laing, A. (2017). Subnational violent conflict forecasts for sub-Saharan Africa, 2015–65, using climate-sensitive models. Journal of Peace Research, 54(2), 175–192.

    Article  Google Scholar 

  22. Zammit-Mangion, A., Dewar, M., Kadirkamanathan, V., & Sanguinetti, G. (2012). Point process modelling of the Afghan war diary. Proceedings of the National Academy of Sciences, 109(31), 12414–12419. https://doi.org/10.1073/pnas.1203177109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Kupilik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupilik, M., Witmer, F. Spatio-temporal violent event prediction using Gaussian process regression. J Comput Soc Sc 1, 437–451 (2018). https://doi.org/10.1007/s42001-018-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42001-018-0024-y

Keywords

Navigation