Skip to main content

Advertisement

Log in

A new tool for the evaluation of the rehabilitation outcomes in older persons: a machine learning model to predict functional status 1 year ahead

  • Research Paper
  • Published:
European Geriatric Medicine Aims and scope Submit manuscript

Abstract

Purpose

To date, the assessment of disability in older people is obtained utilizing a Comprehensive Geriatric Assessment (CGA). However, it is often difficult to understand which areas of CGA are most predictive of the disability. The aim of this study is to evaluate the possibility to early predict—1 year ahead—the disability level of a patient using machine leaning models.

Methods

Community-dwelling older people were enrolled in this study. CGA was made at baseline and at 1 year follow-up. After collecting input/independent variables (i.e., age, gender, schooling followed, body mass index, information on smoking, polypharmacy, functional status, cognitive performance, depression, nutritional status), we performed two distinct Support Vector Machine models (SVMs) able to predict functional status 1 year ahead. To validate the choice of the model, the results achieved with the SVMs were compared with the output produced by simple linear regression models.

Results

218 patients (mean age = 78.01; SD = 7.85; male = 39%) were recruited. The combination of the two SVMs is able to achieve a higher prediction accuracy (exceeding 80% instances correctly classified vs 67% instances correctly classified by the combination of the two linear regression models). Furthermore, SVMs are able to classify both the three categories, self sufficiently, disability risk and disability, while linear regression model separates the population only in two groups (self-sufficiency and disability) without identifying the intermediate category (disability risk) which turns out to be the most critical one.

Conclusions

The development of such a model can contribute to the early detection of patients at risk of self-sufficiency loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chatterji S, Byles J, Cutler D, Seeman T, Verdes E (2015) Health, functioning, and disability in older adults-present status and future implications. Lancet 385(9967):563–575. https://doi.org/10.1016/S0140-6736(14)61462-8

    Article  PubMed  Google Scholar 

  2. Ensrud KE, Ewing SK, Taylor BC, Fink HA, Stone KL, Cauley JA, Tracy JK, Hochberg MC, Rodondi N, Cawthon PM (2007) Frailty and risk of falls, fracture, and mortality in older women: the study of osteoporotic fractures. J Gerontol A 62(7):744–751. https://doi.org/10.1093/gerona/62.7.744

    Article  Google Scholar 

  3. Rockwood K, Stadnyk K, MacKnight C, McDowell I, Hébert R, Hogan DB (1999) A brief clinical instrument to classify frailty in elderly people. Lancet 353(9148):205–206

    Article  CAS  PubMed  Google Scholar 

  4. Hubbard RE, O’mahony MS, Woodhouse KW (2009) Characterising frailty in the clinical setting: a comparison of different approaches. Age Ageing 38(1):115–119. https://doi.org/10.1093/ageing/afn252

    Article  PubMed  Google Scholar 

  5. Cohen HJ, Feussner JR, Weinberger M, Carnes M, Hamdy RC, Hsieh F, Phibbs C, Courtney D, Lyles KW, May C, McMurtry C, Pennypacker L, Smith DM, Ainslie N, Hornick T, Brodkin K, Lavori PA (2002) A controlled trial of inpatient and outpatient geriatric evaluation and management. N Engl J Med 346(12):905–912

    Article  PubMed  Google Scholar 

  6. Dent E, Kowal P, Hoogendijk EO (2016) Frailty measurement in research and clinical practice: a review. Eur J Intern Med 31:3–10. https://doi.org/10.1016/j.ejim.2016.03.007

    Article  PubMed  Google Scholar 

  7. Melis RJ, van Eijken MI, Teerenstra S, van Achterberg T, Parker SG, Borm GF, van de Lisdonk EH, Wensing M, Rikkert MG (2008) A randomized study of a multidisciplinary program to intervene on geriatric syndromes in vulnerable older people who live at home (Dutch EASYcare Study). J Gerontol A 63(3):283–290. https://doi.org/10.1093/gerona/63.3.283

    Article  Google Scholar 

  8. Pilotto A, Rengo F, Marchionni N (2012) Comparing the prognostic accuracy for all-cause mortality of the Frailty Instruments: a multicentre 1-year follow-up in hospitalized older patients. PLoS ONE 7(1):1–9. https://doi.org/10.1371/journal.pone.0029090

    Article  CAS  Google Scholar 

  9. Pilotto A, Cella A, Pilotto A, Daragjati J, Veronese N, Musacchio C, Mello AM, Logroscino G, Padovani A, Prete C, Panza F (2017) Three decades of Comprehensive Geriatric Assessment: evidence coming from different healthcare settings and specific clinical conditions. J Am Med Dir Assoc 18(2):192. https://doi.org/10.1016/j.jamda.2016.11.004

    Article  PubMed  Google Scholar 

  10. Szybalska A, Broczek K, Slusarczyk P, Kozdron E, Chudek J, Puzianowska-Kuznicka M, Kostka T, Skalska A, Mossakowska M (2018) Utilization of medical rehabilitation services among older Poles: results of the PolSenior study. Eur Geriatr Med. https://doi.org/10.1007/s41999-018-0077-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, Shilton A, Yearwood J, Dimitrova N, Ho TB, Venkatesh S, Berk M (2016) Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res 18(12):e323. https://doi.org/10.2196/jmir.5870

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gueli N, Martinez A, Verrusio W, Linguanti A, Passador P, Martinelli V, Longo G, Marigliano B, Cacciafesta F, Cacciafesta M (2012) Empirical antibiotic therapy (ABT) of lower respiratory tract infections (LRTI) in the elderly: application of artificial neural network (ANN). Preliminary results. Arch Gerontol Geriatr 55(2):499–503. https://doi.org/10.1016/j.archger.2011.09.006

    Article  PubMed  Google Scholar 

  13. Koprowski R, Lanza M, Irregolare C (2016) Corneal power evaluation after myopic corneal refractive surgery using artificial neural networks. Biomed Eng Online 15(1):121. https://doi.org/10.1186/s12938-016-0243-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel JL, Goyal RK (2007) Applications of artificial neural networks in medical science. Curr Clin Pharmacol 2(3):217–226. https://doi.org/10.2174/157488407781668811

    Article  PubMed  Google Scholar 

  15. Gironi M, Borgiani B, Farina E, Mariani E, Cursano C, Alberoni M, Nemni R, Comi G, Buscema M, Furlan R, Grossi E (2015) A global immune deficit in Alzheimer’s disease and mild cognitive impairment disclosed by a novel data mining process. J Alzheimers Dis 43(4):1199–1213. https://doi.org/10.3233/JAD-141116

    Article  PubMed  Google Scholar 

  16. Kourou K, Exarchos TP, Konstantinos PE, Michalis VK, Dimitrios IF (2014) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saylam B, Keskek M, Ocak S, Akten AO, Tez M (2013) Artificial neural network analysis for evaluating cancer risk in multinodular goiter. J Res Med Sci 18(7):554–557

    PubMed  PubMed Central  Google Scholar 

  18. Zhu LC, Ye LY, Luo WH, Su M, Wei HP, Zhang XB, Wei J, Zou CL (2013) A model to discriminate malignant from benign thyroid nodules using artificial neural network. PLoS ONE 8(12):e82211. https://doi.org/10.1371/journal.pone.0082211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuo RJ, Huang MH, Cheng WC, Lin CC, Wu YH (2014) Application of a two-stage fuzzy neural network to a prostate cancer prognosis system. Artif Intell Med 63(2):119–133. https://doi.org/10.1016/j.artmed.2014.12.008

    Article  PubMed  Google Scholar 

  20. Procopet B, Cristea VM, Robic MA, Grigorescu M, Agachi PS, Metivier S, Peron JM, Selves J, Stefanescu H, Berzigotti A, Vinel JP, Bureau C (2015) Serum tests, liver stiffness and artificial neural networks for diagnosing cirrhosis and portal hypertension. Dig Liver Dis 47(5):411–416. https://doi.org/10.1016/j.dld.2015.02.001

    Article  PubMed  Google Scholar 

  21. Mortazavi SS, Shati M, Keshtkar A, Malakouti SK, Bazargan M, Assari S (2016) Defining polypharmacy in the elderly: a systematic review protocol. BMJ Open 6(3):e010989. https://doi.org/10.1136/bmjopen-2015-010989

    Article  PubMed  PubMed Central  Google Scholar 

  22. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW (1963) Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA 185:914–919

    Article  CAS  Google Scholar 

  23. Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186

    Article  PubMed  Google Scholar 

  24. Cucinotta D, Angelin A, Godoli G et al (1989) Proposta e validazione di un semplice indice per la valutazione funzionale globale dell’anziano: il GEFI. Giornale Gerontologia 38:31–36

    Google Scholar 

  25. Folstein M, Folstein SE, McHugh PR (1975) “Mini-Mental State” a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  26. Vellas B, Guigoz Y, Garry PJ (1996) Assessing the nutritional status of the elderly: the Mini Nutritional Assessment as part of the geriatric evaluation. Nutr Rev 54:s59–s65

    PubMed  Google Scholar 

  27. Ji S, Ja Y (1986) Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clinical gerontology: a guide to assessment and intervention. The Haworth Press Ltd., New York, pp 165–173

    Google Scholar 

  28. Amici A, Cicconetti P, Baratta A, Cacciafesta M (2008) The Marigliano–Cacciafesta polypathology scale (MCPS): a tool for predicting the risk of developing disability. Arch Gerontol Geriatr 47(2):201–206. https://doi.org/10.1016/j.archger.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  29. Shevade SK, Keerthi SS, Bhattacharyya C (2000) Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Netw 11(5):1188–1193

    Article  CAS  PubMed  Google Scholar 

  30. Liira H, Mavaddat N, Eineluoto M, Kautiainen H, Strandberg T, Suominen M, Laakkonen ML, Eloniemi-Sulkava U, Sintonen H, Pitkälä K (2018) Health-related quality of life as a predictor of mortality in heterogeneous samples of older adults. Eur Geriatr Med 9(2):227–234. https://doi.org/10.1007/s41999-018-0029-3

    Article  Google Scholar 

  31. Kulminski A, Yashin A, Arbeev K, Akushevich I, Ukraintseva S, Land K, Manton K (2007) Cumulative index of health disorders as an indicator of the aging-associated processes in elderly: results from analyses of the National Long Term Care Survey. Mech Ageing Dev 128(3):250–258. https://doi.org/10.1016/j.mad.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  32. Verrusio W, Renzi A, Spallacci G, Cecchetti F, Gaj F, Coi M, Ripani M, Cacciafesta M (2018) The development of a new tool for the evaluation of handicap in elderly: the Geriatric Handicap Scale (GHS). Aging Clin Exp Res. https://doi.org/10.1007/s40520-018-0907-z

    Article  PubMed  Google Scholar 

  33. Kabeshova A, Launay CP, Gromov VA, Annweiler C, Fantino B, Beauchet O (2015) Artificial neural network and falls in community-dwellers: a new approach to identify the risk of recurrent falling? J Am Med Dir Assoc 16(4):277–281. https://doi.org/10.1016/j.jamda.2014.09.013

    Article  PubMed  Google Scholar 

  34. Kabeshova A, Launay CP, Gromov VA, Fantino B, Levinoff EJ, Allali G, Beauchet O (2016) Falling in the elderly: do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies. Eur J Intern Med 27:48–56. https://doi.org/10.1016/j.ejim.2015.11.019

    Article  PubMed  Google Scholar 

  35. Bertè F, Lamponi G, Calabrò RS, Bramanti P (2014) Elman neural network for the early identification of cognitive impairment in Alzheimer’s disease. Funct Neurol 29(1):57–65

    PubMed  PubMed Central  Google Scholar 

  36. Lin L, Jin C, Fu Z, Zhang B, Bin G, Wu S (2016) Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks. Comput Methods Programs Biomed 125:8–17. https://doi.org/10.1016/j.cmpb.2015.11.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Paola Verico (Sapienza University of Rome) for her technical support at this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Verrusio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study which involved human participants were in accordance with our institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verrusio, W., Renzi, A., Dellepiane, U. et al. A new tool for the evaluation of the rehabilitation outcomes in older persons: a machine learning model to predict functional status 1 year ahead. Eur Geriatr Med 9, 651–657 (2018). https://doi.org/10.1007/s41999-018-0098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41999-018-0098-3

Keywords

Navigation