Skip to main content
Log in

Comparative study for production of unstable peracetic acid using microstructured reactors and its kinetic study

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Peracetic acid is one of the most essential organic solvents used in many chemical, pharmaceutical, food industries so on. There is an increasing demand for peracetic acid due to its versatile oxidative property. A continuous flow microstructured reactor techniques have been efficiently employed for the formation of peracetic acid using a homogeneous catalyst (sulfuric acid). In the experiments, the formation of peracetic acid was carried out at different molar ratios, three different configurations of microreactors, catalyst concentration and temperature. Three different configurations of a serpentine capillary microreactor, Corning® Advanced FlowTM Reactor, and helical capillary microreactor were compared for the formation of peracetic acid. Among these three microreactors, helical capillary microreactor has shown the maximum conversion of acetic acid in lesser time. The reaction is slow because the equilibrium reaches within 9 minutes at 60 °C and 12 mol % catalyst in 13.25 mm radius of curvature microreactor with the maximum concentration of peracetic acid achieved (3.751 mol/L (XAA = 62.21%)). The kinetic expressions of peracetic acid formation and hydrolysis were developed and the constants of the kinetic model were calculated. The activation energies (Ea) of peracetic acid formation and hydrolysis were 45.536 and 49.236 kJ/mol respectively. The equilibrium constant (Ke) was determined as 2.971, 2.838, 2.711, 2.590 and 2.475 at 20, 30, 40, 50 and 60 °C respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Uhl, M. Bitzer, H. Wolf, D. Hermann, S. Gutewort, M. Völkl, I. Nagl, Peroxy Compounds, Organic, in: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018: pp. 1–45. https://doi.org/10.1002/14356007.a19_199.pub2.

  2. DiMauro S, Hirano M (2005) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15:276–286. https://doi.org/10.1016/j.nmd.2004.12.008

    Article  PubMed  Google Scholar 

  3. Zhao X, Zhang T, Zhou Y, Liu D (2007) Preparation of peracetic acid from hydrogen peroxide. J Mol Catal A Chem 271:246–252. https://doi.org/10.1016/j.molcata.2007.03.012

    Article  CAS  Google Scholar 

  4. Zhao X, Cheng K, Hao J, Liu D (2008) Preparation of peracetic acid from hydrogen peroxide, part II: Kinetics for spontaneous decomposition of peracetic acid in the liquid phase. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2008.01.003

  5. Kitis M (2004) Disinfection of wastewater with peracetic acid: a review. Environ Int 30:47–55. https://doi.org/10.1016/S0160-4120(03)00147-8

    Article  CAS  PubMed  Google Scholar 

  6. Domínguez Henao L, Turolla A, Antonelli M (2018) Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. Chemosphere. 213:25–40. https://doi.org/10.1016/j.chemosphere.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  7. Ebrahimi F, Kolehmainen E, Oinas P, Hietapelto V, Turunen I (2011) Production of unstable percarboxylic acids in a microstructured reactor. Chem Eng J. https://doi.org/10.1016/j.cej.2010.08.091

  8. Maralla Y, Sonawane S (2018) Process intensification using a spiral capillary microreactor for continuous flow synthesis of performic acid and it’s kinetic study. Chem Eng Process Process Intensif 125:67–73. https://doi.org/10.1016/j.cep.2018.01.009

    Article  CAS  Google Scholar 

  9. Maralla Y, Sonawane SH (2019) Process Intensification by Using a Helical Capillary Microreactor for a Continuous Flow Synthesis of Peroxypropionic Acid and Its Kinetic Study. Periodica Polytechnica Chemical Engineering. https://doi.org/10.3311/PPch.12885

  10. Ebrahimi F, Kolehmainen E, Laari A, Haario H, Semenov D, Turunen I (2012) Determination of kinetics of percarboxylic acids synthesis in a microreactor by mathematical modeling. Chem Eng Sci 71:531–538. https://doi.org/10.1016/j.ces.2011.11.028

    Article  CAS  Google Scholar 

  11. Leveneur S, Wärnå J, Salmi T, Murzin DY, Estel L (2009) Interaction of intrinsic kinetics and internal mass transfer in porous ion-exchange catalysts: Green synthesis of peroxycarboxylic acids. Chem Eng Sci. https://doi.org/10.1016/j.ces.2009.05.055

  12. Ehrfeld W, Hessel V, Löwe H (2001) Microreactors - New Technology for Modern Chemistry Wolfgang Ehrfeld Volker Hessel Holger Löwe Wiley-VCH: Weinheim. 2000. 288 pp. Price £80. ISBN3-527-29590-9. Org Process Res Dev 5:89–89. https://doi.org/10.1021/op000071i

    Article  CAS  Google Scholar 

  13. Inoue T, Schmidt MA, Jensen KF (2007) Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Ind Eng Chem Res. https://doi.org/10.1021/ie061277w

  14. Hessel V, Hardt S, Löwe H (2004) Chemical Micro Process Engineering: Fundamentals, Modelling and Reactions. https://doi.org/10.1002/3527603042.fmatter

    Book  Google Scholar 

  15. F. Ebrahimi, Synthesis of Percarboxylic Acids in Microreactor, 2012.

  16. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-Flow Technology-A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew Chem Int Ed 54:6688–6728. https://doi.org/10.1002/anie.201409318

    Article  CAS  Google Scholar 

  17. N. Kockmann, M. Engler, P. Woias, Convective mixing and chemical reactions in T-shaped micro reactors, … of the AIChE Annual Meeting, Austin, …. (2004).

  18. Kockmann N (2008) Pressure loss and transfer rates in microstructured devices with chemical reactions. Chem Eng Technol. https://doi.org/10.1002/ceat.200800065

  19. Losey MW, Jackman RJ, Firebaugh SL, Schmidt MA, Jensen KF (2002) Design and fabrication of microfluidic devices for multiphase mixing and reaction. J Microelectromech Syst. https://doi.org/10.1109/JMEMS.2002.803416

  20. Kockmann N, Roberge DM (2011) Transitional flow and related transport phenomena in curved microchannels. Heat Transfer Engineering. https://doi.org/10.1080/01457632.2010.509753

  21. Kockmann N (2017) Transport Phenomena and Chemical Reactions in Modular Microstructured Devices. Heat Transfer Engineering. https://doi.org/10.1080/01457632.2016.1242966

  22. V. Hessel, T. Noël, Micro Process Technology, 2. Processing, in: Ullmann’s Encyclopedia of Industrial Chemistry, 2012. https://doi.org/10.1002/14356007.b16_b37.pub2.

  23. Teixeira AR, Jensen KF, Zhang J, Wang K, Luo G (2017) Design and Scaling Up of Microchemical Systems: A Review. Annual Review of Chemical and Biomolecular Engineering. https://doi.org/10.1146/annurev-chembioeng-060816-101443

  24. Holvey CP, Roberge DM, Gottsponer M, Kockmann N, Macchi A (2011) Pressure drop and mixing in single phase microreactors: Simplified designs of micromixers. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2011.05.016

  25. Su Y, Lautenschleger A, Chen G, Kenig EY (2014) A numerical study on liquid mixing in multichannel micromixers. Ind Eng Chem Res. https://doi.org/10.1021/ie401924x

  26. I. Papautsky, T. Ameel, a B. Frazier, A Review of Laminar Single-Phase Flow in Microchannels, in: 2001 ASME International Mechanical Engineering Congress and Exposition, 2001.

  27. S.G. Kandlikar, Single-Phase Liquid Flow in Minichannels and Microchannels, in: Heat Transfer and Fluid Flow in Minichannels and Microchannels, 2013. https://doi.org/10.1016/B978-0-08-098346-2.00003-X.

  28. Kumar V, Paraschivoiu M, Nigam KDP (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci. https://doi.org/10.1016/j.ces.2010.08.016

  29. Serizawa A, Feng Z, Kawara Z (2002) Two-phase flow in microchannels. Exp Thermal Fluid Sci. https://doi.org/10.1016/S0894-1777(02)00175-9

  30. Aubin J, Ferrando M, Jiricny V (2010) Current methods for characterising mixing and flow in microchannels. Chem Eng Sci. https://doi.org/10.1016/j.ces.2009.12.001

  31. Singh J, Kockmann N, Nigam KDP (2014) Novel three-dimensional microfluidic device for process intensification. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2014.10.013

  32. Gad SC (2014) Peracetic Acid. Encyclopedia of ToxicologyThird edn. https://doi.org/10.1016/B978-0-12-386454-3.01197-0

  33. Dul’neva LV, Moskvin AV (2005) Kinetics of Formation of Peroxyacetic Acid. Russ J Gen Chem 75:1125–1130. https://doi.org/10.1007/s11176-005-0378-8

    Article  CAS  Google Scholar 

  34. Jolhe PD, Bhanvase BA, Patil VS, Sonawane SH (2015) Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor. Chem Eng J. https://doi.org/10.1016/j.cej.2015.04.054

  35. Zhao X, Zhang T, Zhou Y, Liu D (2007) Preparation of peracetic acid from hydrogen peroxide. Part I: Kinetics for peracetic acid synthesis and hydrolysis. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2007.03.012

  36. Greenspan FP, MacKellah DG (1948) Analysis of Aliphatic Per Acids. Anal Chem. https://doi.org/10.1021/ac60023a020

  37. Dean JA (1990) Lange’s handbook of chemistry. Mater Manuf Process. https://doi.org/10.1080/10426919008953291

  38. Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. (1953). https://doi.org/10.1098/rspa.1953.0139.

  39. C.H. Hornung, B. Hallmark, M. Baumann, I.R. Baxendale, S. V Ley, P. Hester, P. Clayton, M.R. Mackley, Multiple Microcapillary Reactor for Organic Synthesis, (2010) 4576–4582.

  40. Suranani S, Maralla Y, Gaikwad SM, Sonawane SH (2018) Process intensification using corning ® advanced-flowTM reactor for continuous flow synthesis of biodiesel from fresh oil and used cooking oil. Chem Eng Process Process Intensif 126:62–73. https://doi.org/10.1016/j.cep.2018.02.013

    Article  CAS  Google Scholar 

  41. Maralla Y, Sonawane S, Kashinath D, Pimplapure M, Paplal B (2017) Process Intensification of Tetrazole reaction through tritylation of 5-[4′-(Methyl) Biphenyl-2-Yl] using microreactors. Chem Eng Process Process Intensif 112:9–17. https://doi.org/10.1016/j.cep.2016.12.003

    Article  CAS  Google Scholar 

  42. Sonawane SH, Patil VS, Sonawane SS, Potoroko I, Suranani S, Gaikwad SM, Bhanvase BA, Jolhe PD, Pimplapure MS, Kulkarni A (2017) Process intensification for continuous synthesis of performic acid using Corning advanced-flow reactors. Green Processing and Synthesis. https://doi.org/10.1515/gps-2016-0147

  43. Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2012) Hydrodynamics of Liquid–Liquid Dispersion in an Advanced-Flow Reactor. Ind Eng Chem Res 51:16251–16262. https://doi.org/10.1021/ie301821k

    Article  CAS  Google Scholar 

  44. Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2013) Gas–Liquid Flow and Mass Transfer in an Advanced-Flow Reactor. Ind Eng Chem Res 52:8996–9010. https://doi.org/10.1021/ie4011707

    Article  CAS  Google Scholar 

  45. Duryodhan VS, Chatterjee R, Govind Singh S, Agrawal A (2017) Mixing in planar spiral microchannel. Exp Thermal Fluid Sci. https://doi.org/10.1016/j.expthermflusci.2017.07.024.

  46. A.D. Radadia, R. Masel, M. Shannon, K. Cadwallader, Effect of microchannel configuration and bend geometries on dispersion in micro-channel reactors, in: AIChE Annual Meeting, Conference Proceedings, 2005.

    Google Scholar 

  47. Kurt SK, Gelhausen MG, Kockmann N (2015) Axial Dispersion and Heat Transfer in a Milli/Microstructured Coiled Flow Inverter for Narrow Residence Time Distribution at Laminar Flow. Chem Eng Technol. https://doi.org/10.1002/ceat.201400515

  48. Kurt SK, Warnebold F, Nigam KDP, Kockmann N (2017) Gas-liquid reaction and mass transfer in microstructured coiled flow inverter. Chem Eng Sci. https://doi.org/10.1016/j.ces.2017.01.017

  49. Kashid MN, Agar DW (2007) Hydrodynamics of liquid-liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chem Eng J. https://doi.org/10.1016/j.cej.2006.11.020

  50. López-Guajardo E, Ortiz-Nadal E, Montesinos-Castellanos A, Nigam KDP (2017) Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction. Chem Eng Sci. https://doi.org/10.1016/j.ces.2017.01.016

  51. M.G. Gelhausen, S.K. Kurt, N. Kockmann, Mixing and Heat Transfer in Helical Capillary Flow Reactors With Alternating Bends, in: 2014. https://doi.org/10.1115/icnmm2014-21779.

  52. S.K. Kurt, K.D.P. Nigam, N. Kockmann, Two-Phase Flow and Mass Transfer in Helical Capillary Flow Reactors With Alternating Bends, in: ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ASME, 2015: p. V001T03A014. https://doi.org/10.1115/ICNMM2015-48416.

  53. S.K. Kurt, M. Akhtar, K.D.P. Nigam, N. Kockmann, Modular Concept of a Smart Scale Helically Coiled Tubular Reactor for Continuous Operation of Multiphase Reaction Systems, in: 2016. https://doi.org/10.1115/icnmm2016-8004.

  54. Pinkernell U, Effkemann S, Karst U (1997) Simultaneous HPLC Determination of Peroxyacetic Acid and Hydrogen Peroxide. Anal Chem 69:3623–3627. https://doi.org/10.1021/ac9701750

    Article  CAS  PubMed  Google Scholar 

  55. González-Aguilar G, Ayala-Zavala JF, Chaidez-Quiroz C, Heredia JB, Campo NC (2012) Peroxyacetic Acid. Decontamination of Fresh and Minimally Processed Produce. Wiley-Blackwell, Oxford, UK, pp 215–223. https://doi.org/10.1002/9781118229187.ch12

    Chapter  Google Scholar 

  56. Rippin DWT (1964) Chemical reaction engineering. Chem Eng Sci 19:91. https://doi.org/10.1016/0009-2509(64)85017-X

    Article  Google Scholar 

  57. Missen RW, a Mims C, a Saville B (1998) Introduction to chemical reaction engineering and kinetics. https://doi.org/10.1016/j.emj.2004.12.015

    Book  Google Scholar 

  58. Scott Fogler H (2002) Elements of chemical reaction engineering. Chem Eng Sci. https://doi.org/10.1016/0009-2509(87)80130-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish Sonawane.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maralla, Y., Sonawane, S. Comparative study for production of unstable peracetic acid using microstructured reactors and its kinetic study. J Flow Chem 9, 145–154 (2019). https://doi.org/10.1007/s41981-019-00035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00035-y

Keywords

Navigation