Skip to main content
Log in

Immobilization of lipase on the surface of a micro tube and continuous transesterification

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Candida antarctica lipase B (CALB) was cross-linked efficiently, using a reagent containing glutaraldehyde (GA), paraformaldehyde (PA), and a polylysine reagent. For the reaction under micro-flow conditions, CALB was immobilized on the inner surface of a polytetrafluoroethylene (PTFE) tube, by flowing the cross-linking reagents in an appropriate flow rate. The immobilized CALB formed a membrane-like structure on the inner surface of the tube and showed catalytic activity for transesterification. Although the enzyme activity was not high at the immobilized CALB, the productivity of micro-flow reaction using immobilized CALB was higher than that of batch-wise reaction using free CALB.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Polaina J, MacCabe AP (2010) Industrial enzymes. Springer, Dordrecht

    Google Scholar 

  2. Casas-Godoy L, Meunchan M, Cot M, Duquesne S, Bordes F, Marty A (2014) J Biotechnol 180:30–36

    Article  CAS  Google Scholar 

  3. Chang SW, Shaw JF, Yang KH, Shih IL, Hsieh CH, Shieh CJ (2005) Green Chem 7:547–551

    Article  CAS  Google Scholar 

  4. Gutmann B, Cantillo D, Kappe O (2015) Angew Chem Int Ed 54:6688–6728

    Article  CAS  Google Scholar 

  5. Heintz S, Mitic A, Ringborg RH, Krühne U, Woodley JM, Gernaey KV (2016) J Flow Chem 6:18–26

    Article  CAS  Google Scholar 

  6. Jime’nez-Gonza’lez C, Poechlauer P, Broxterman QB, Yang BS, Ende D, Baird J, Bertsch C, Hannah RE, Dell’Orco P, Manley J (2011) Org Process Res Dev 15:900–911

    Article  Google Scholar 

  7. Novak U, Lavric D, Žnidaršič-Plazl P (2016) J Flow Chem 6:33–38

    Article  CAS  Google Scholar 

  8. Wohlgemuth R, Plazl I, Žnidaršič-Plazl P, Gernaey KV, Woodley JM (2015) Trends Biotechnol 33:302–314

    Article  CAS  Google Scholar 

  9. Žnidaršič-Plazl P (2017) J Flow Chem 7:111–117

    Article  Google Scholar 

  10. Fu H, Dencic I, Tibhe J, Sanchez Pedraza CA, Wang Q, Noël T, Meuldijk J, Croon M, Hessel V, Diels L (2012) Chem Eng J 207:564–576

    Article  Google Scholar 

  11. Denčić I, Noël T, Meuldijk J, Croon M, Hessel V (2013) Eng Life Sci 13:326–343

    Article  Google Scholar 

  12. Honda T, Miyazaki M, Nakamura H, Maeda H (2005) Chem Commun:5062–5064

  13. Honda T, Miyazaki M, Nakamura H, Maeda H (2006) Adv Synth Catal 348:2163–2171

    Article  CAS  Google Scholar 

  14. Doukyu N, Ogino H (2010) Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  15. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Enzym Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  16. Sheldon RA (2007) Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  17. Yoshimura Y, Osaki S, Miyake Y, Mori H (2013) Reports of Industrial Technology Center of Wakayama Prefecture, pp 11–12

  18. Yoshimura Y, Tsuchitani A, Mori M, Osaki S, Miyazaki T, Mori H (2016) The 96th CSJ Annual Meeting, 3PA-231

  19. Bolivar JM, Eisl I, Nidetzky B (2015) Catal Today 259:66–80

    Article  Google Scholar 

  20. Wold F (1972) Methods Enzymol 25:623–651

    Article  CAS  Google Scholar 

  21. Karnovsky MJ (1965) J Cell Biol 27:137A–138A

    Google Scholar 

  22. Barbosa O, Torres R, Ortiz C, Fernandez-Lafuentec R (2012) Process Biochem 47:766–774

    Article  CAS  Google Scholar 

  23. Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) Structure 2:293–308

    Article  CAS  Google Scholar 

  24. Ishii M (1989) WO Patent 1988002775 A1

  25. Alotaibi M, Manayil JC, Greenway GM, Haswell SJ, Kelly SM, Lee AF, Wilson K, Kyriakou G (2018) React Chem Eng. Advance Article

  26. Nie K, Xie F, Wang F, Tan T (2006) J Mol Catal B Enzym 43:142–147

    Article  CAS  Google Scholar 

  27. Bai YX, Li Y, Feng YY, Yi LX (2006) Process Biochem 41:770–777

    Article  CAS  Google Scholar 

  28. Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Biomacromolecules 9:463–471

    Article  CAS  Google Scholar 

  29. Chulalaksananukul W, Condoret JS, Combes D (1992) Enzym Microb Technol 14:293–298

    Article  CAS  Google Scholar 

  30. Yadav GD, Trivedi AH (2003) Enzym Microb Technol 32:783–789

    Article  CAS  Google Scholar 

  31. Henderson JW, Ricker RD, Bidlingmeyer BA, Woodward C (2000) Agilent Technologies, Inc., 5980-1193E

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuko Yoshimura or Hajime Mori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimura, Y., Saito, A., Mori, M. et al. Immobilization of lipase on the surface of a micro tube and continuous transesterification. J Flow Chem 8, 45–50 (2018). https://doi.org/10.1007/s41981-018-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0006-5

Keywords

Navigation