Skip to main content
Log in

Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

An extractive-reaction process for the synthesis of HMF from fructose was implemented in microreactor. Experimental conditions were 10 wt.% fructose in water, MIBK as extracting solvent and HCl as catalyst in a temperature window of 120–160 °C, a MIBK/H2O ratio 1 to 9 and an HCl concentration of 0.25–2 M. The dehydration of fructose to HMF is achieved in less than 40s with a total HMF yield higher than 90% at 150 °C. Aqueous and organic phase spontaneously separate at the outlet of the reactor and HMF is obtained in MIBK with a yield of 80% and a purity of 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. Productivity is defined as the amount of HMF generated per minute and per reactor’s volume. It is calculated by multipluing the flow rate by the concentration of the fructose and the conversion and dividing by the volume of the reactor.

References

  1. Kuster BFM (1990). Starch - Stärke 42:314–321

    Article  CAS  Google Scholar 

  2. Teong SP, Yi G, Zhang Y (2014). Green Chem 16:2015–2026

    Article  CAS  Google Scholar 

  3. Yu IKM, Tsang DCW (2017). Bioresour Technol 238:716–732

    Article  CAS  Google Scholar 

  4. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013). Chem Rev 113:1499–1597

    Article  Google Scholar 

  5. Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S (2014). ChemSusChem 7:117–126

    Article  CAS  Google Scholar 

  6. Fayet C, Gelas J (1983). Carbohydr Res 122:59–68

    Article  Google Scholar 

  7. Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, Konig B (2009). Green Chem 11:1948–1954

    Article  CAS  Google Scholar 

  8. Ståhlberg T, Fu W, Woodley JM, Riisager A (2011). ChemSusChem 4:451–458

    Article  Google Scholar 

  9. Moreau C, Finiels A, Vanoye L (2006). J Mol Catal A Chem 253:165–169

    Article  CAS  Google Scholar 

  10. Shi CY, Xin JY, Liu XM, Lu XM, Zhang SJ (2016). ACS Sustain Chem Eng 4:557–563

    Article  CAS  Google Scholar 

  11. Saha B, Abu-Omar MM (2014). Green Chem 16:24–38

    Article  CAS  Google Scholar 

  12. Hohmann L, Kurt SK, Soboll S, Kockmann N (2016). J Flow Chem 6:181–190

    Article  Google Scholar 

  13. Peniston QP Manufacture of 5-hydroxymethyl 2-furfural US Patent 2,750,394, (May 22, 1952)

  14. Cope AC Production and recovery of furans US Patent 2,917,520, (Dec. 15, 1959)

  15. Román-Leshkov Y, Chheda JN, Dumesic JA (2006). Science 312:1933–1937

    Article  Google Scholar 

  16. Roman-Leshkov Y, Dumesic JA (2009). Top Catal 52:297–303

    Article  CAS  Google Scholar 

  17. Chheda JN, Roman-Leshkov Y, Dumesic JA (2007). Green Chem 9:342–350

    Article  CAS  Google Scholar 

  18. Shen Y, Sun J, Yi Y, Li M, Wang B, Xu F, Sun R (2014). Bioresour Technol 172:457–460

    Article  CAS  Google Scholar 

  19. Qing Q, Guo Q, Zhou L, Wan Y, Xu Y, Ji H, Gao X, Zhang Y (2017). Bioresour Technol 226:247–254

    Article  CAS  Google Scholar 

  20. Blumenthal LC, Jens CM, Ulbrich J r, Schwering F, Langrehr V, Turek T, Kunz U, Leonhard K, Palkovits R (2016). ACS Sustain Chem Eng 4:228–235

    Article  CAS  Google Scholar 

  21. Jiang N, Qi W, Huang R, Wang M, Su R, He Z (2014). J Chem Technol Biotechnol 89:56–64

    Article  CAS  Google Scholar 

  22. Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q (2013). ChemSusChem 6:746–789

    Article  CAS  Google Scholar 

  23. Keseru GM, Soos T, Kappe CO (2014). Chem Soc Rev 43:5387–5399

    Article  CAS  Google Scholar 

  24. Dencic I, Noel T, Meuldijk J, de Croon M, Hessel V (2013). Eng Life Sci 13:326–343

    Article  CAS  Google Scholar 

  25. Tuercke T, Panic S, Loebbecke S (2009). Chem Eng Technol 32:1815–1822

    Article  CAS  Google Scholar 

  26. Brasholz M, von Kaenel K, Hornung CH, Saubern S, Tsanaktsidis J (2011). Green Chem 13:1114–1117

    Article  CAS  Google Scholar 

  27. Shimanouchi T, Kataoka Y, Yasukawa M, No T, Kimura Y (2013). Solvent Extr Res Dev Jpn 20:205–212

    Article  CAS  Google Scholar 

  28. Shimanouchi T, Tanifuji T, Fujioka S, Terasaka K, Kimura Y (2014). Solvent Extr Res Dev Jpn 21:201–209

    Article  CAS  Google Scholar 

  29. Shimanouchi T, Kataoka Y, Tanifuji T, Kimura Y, Fujioka S, Terasaka K (2016). AICHE J 62:2135–2143

    Article  CAS  Google Scholar 

  30. Muranaka Y, Nakagawa H, Masaki R, Maki T, Mae K (2017). Ind Eng Chem Res 56:10998–11005

    Article  CAS  Google Scholar 

  31. Kuster BFM, van der Steen HJC (1977). Starch - Stärke 29:99–103

    Article  CAS  Google Scholar 

  32. Patil SKR, Lund CRF (2011). Energy Fuel 25:4745–4755

    Article  CAS  Google Scholar 

  33. Mohammad S, Held C, Altuntepe E, Köse T, Sadowski G (2016). J Phys Chem B 120:3797–3808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. L. gratefully acknowledges financial support by “Institut de Chimie de Lyon” (ICL). Authors would like to thank F. Bornette for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Favre-Réguillon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lueckgen, J., Vanoye, L., Philippe, R. et al. Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor. J Flow Chem 8, 3–9 (2018). https://doi.org/10.1007/s41981-018-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0004-7

Keywords

Navigation