Journal of Flow Chemistry

, Volume 8, Issue 1, pp 21–27 | Cite as

Sustainable synthesis of N-methylated peptides in a continuous-flow fixed bed reactor

  • Aliz Szloszár
  • István M. Mándity
  • Ferenc Fülöp
Full Paper


A rapid, simplified and highly efficient continuous-flow solid-phase peptide synthesis technology is reported for the direct synthesis of mono and multiple N-methylated cyclic alanine and valine peptides. Through an optimization study, we find that only 1.5 equivalents of the amino acids are sufficient for the couplings to maintain excellent conversions. Importantly, the technology is outstandingly sustainable, since three chemical steps are cancelled from the procedure and low amount of solvent is used, compared to traditional technologies. Furthermore, it is also applicable to the coupling of challenging amino acids, since pentavalines were constructed with high yield. The technology was successfully upscaled and peptide cyclization was carried out too.

Graphical abstract


peptides synthesis peptidomimetics continuous-flow SPPS N-methylation 



We are grateful to the Hungarian Research Foundation (OTKA No. K 115731). The financial support of the GINOP-2.3.2-15-2016-00014 project is acknowledged. Supported by the ÚNKP-16-4-III New National Excellence Program of the Ministry of Human Capacities

Supplementary material

41981_2018_2_MOESM1_ESM.docx (2.7 mb)
ESM 1 Supporting Information Available: Supplementary data (experimental procedures, HPLC-MS chromatograms and mass spectra, NMR spectrum) associated with this article can be found in the online version at: doi:xxxxxxxxx (DOCX 2740 kb)


  1. 1.
    Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994). J Med Chem 37:1233–1251CrossRefGoogle Scholar
  2. 2.
    Thompson LA, Ellman JA (1996). Chem Rev 96:555–600CrossRefGoogle Scholar
  3. 3.
    Adessi C, Soto C (2002). Curr Med Chem 9:963–978CrossRefGoogle Scholar
  4. 4.
    Wender PA, Verma VA, Paxton TJ, Pillow TH (2008). Acc Chem Res 41:40–49CrossRefGoogle Scholar
  5. 5.
    Banta S, Megeed Z, Casali M, Rege K, Yarmush ML (2007). J Nanosci Nanotechnol 7:387–401CrossRefGoogle Scholar
  6. 6.
    Teixido M, Giralt E (2008). J Pept Sci 14:163–173CrossRefGoogle Scholar
  7. 7.
    Briggs BD, Knecht MR (2012). J Phys Chem Lett 3:405–418CrossRefGoogle Scholar
  8. 8.
    Morelli G, Toniolo C, Venanzi M (2014). J Pept Sci 20:451–452CrossRefGoogle Scholar
  9. 9.
    Tamerler C, Kacar T, Sahin D, Fong H, Sarikaya M (2007). Mater Sci Eng C-Biomimetic Supramol Syst 27:558–564CrossRefGoogle Scholar
  10. 10.
    Krishna OD, Kiick KL (2010). Biopolymers 94:32–48CrossRefGoogle Scholar
  11. 11.
    Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, De Smedt SC (2007). Mater Sci Eng R-Rep 58:117–161CrossRefGoogle Scholar
  12. 12.
    Nagarkar RP, Hule RA, Pochan DJ, Schneider JP (2010). Biopolymers 94:141–155CrossRefGoogle Scholar
  13. 13.
    Mahato RI, Narang AS, Thoma L, Miller DD (2003). Crit Rev Ther Drug Carrier Syst 20:153–214CrossRefGoogle Scholar
  14. 14.
    McGregor DP (2008). Curr Opin Pharmac 8:616–619CrossRefGoogle Scholar
  15. 15.
    Khafagy ES, Morishita M (2012). Adv Drug Deliv Rev 64:531–539CrossRefGoogle Scholar
  16. 16.
    Amidon GL, Lee HJ (1994). Annual Rev Pharm Toxicology 34:321–341CrossRefGoogle Scholar
  17. 17.
    Haviv F, Fitzpatrick TD, Swenson RE, Nichols CJ, Mort NA, Bush EN, Diaz G, Bammert G, Nguyen A, Rhutasel NS, Nellans HN, Hoffman DJ, Johnson ES, Greer J (1993). J Med Chem 36:363–369CrossRefGoogle Scholar
  18. 18.
    Cody WL, He JX, Reily MD, Haleen SJ, Walker DM, Reyner EL, Stewart BH, Doherty AM (1997). J Med Chem 40:2228–2240CrossRefGoogle Scholar
  19. 19.
    Yu J, Butelman ER, Woods JH, Chait BT, Kreek MJ (1997). J Pharm Exp Ther 280:1147–1151Google Scholar
  20. 20.
    Fusetani N, Matsunaga S (1993). Chem Rev 93:1793–1806CrossRefGoogle Scholar
  21. 21.
    Wipf P (1995). Chem Rev 95:2115–2134CrossRefGoogle Scholar
  22. 22.
    Chatterjee J, Laufer B, Beck JG, Helyes Z, Pinter E, Szolcsanyi J, Horvath A, Mandl J, Reubi JC, Keri G, Kessler H (2011). ACS Med Chem Lett 2:509–514CrossRefGoogle Scholar
  23. 23.
    Chatterjee J, Rechenmacher F, Kessler H (2013). Angew Chem Int Ed 52:254–269CrossRefGoogle Scholar
  24. 24.
    Holladay MW, Kopecka H, Miller TR, Bednarz L, Nikkel AL, Bianchi BR, Witte DG, Shiosaki K, Lin CW, Asin KE, Nadzan AM (1994). J Med Chem 37:630–635CrossRefGoogle Scholar
  25. 25.
    Teixido M, Albericio F, Giralt E (2005). J Pept Res 65:153–166CrossRefGoogle Scholar
  26. 26.
    Chatterjee J, Mierke D, Kessler H (2006). J Am Chem Soc 128:15164–15172CrossRefGoogle Scholar
  27. 27.
    Chatterjee J, Mierke DF, Kessler H (2008). Chem Eur J 14:1508–1517CrossRefGoogle Scholar
  28. 28.
    Brunissen A, Ayoub M, Lavielle S (1996). Tetrahedron Lett 37:6713–6716CrossRefGoogle Scholar
  29. 29.
    Arnold U, Huck BR, Gellman SH, Raines RT (2013). Protein Sci 22:274–279CrossRefGoogle Scholar
  30. 30.
    Jahnisch K, Hessel V, Lowe H, Baerns M (2004). Angew Chem Int Ed 43:406–446CrossRefGoogle Scholar
  31. 31.
    Ahmed-Omer B, Brandt JC, Wirth T (2007). Org Biomol Chem 5:733–740CrossRefGoogle Scholar
  32. 32.
    Rasheed M, Wirth T (2011). Angew Chem Int Ed 50:357–358CrossRefGoogle Scholar
  33. 33.
    Kovács L, Szőllősi G, Fülöp F (2015). J Flow Chem 5:210–215CrossRefGoogle Scholar
  34. 34.
    Wiles C, Watts P (2014). Green Chem 16:55–62CrossRefGoogle Scholar
  35. 35.
    Mandity IM, Olasz B, Otvos SB, Fulop F (2014). Chem Sus Chem 7:3172–3176CrossRefGoogle Scholar
  36. 36.
    Simon MD, Heider PL, Adamo A, Vinogradov AA, Mong SK, Li X, Berger T, Policarpo RL, Zhang C, Zou Y, Liao X, Spokoyny AM, Jensen KF, Pentelute BL (2014). Chembiochem 15:713–720CrossRefGoogle Scholar
  37. 37.
    Atherton E, Brown E, Sheppard RC, Rosevear A (1981). Chem Commun:1151–1152Google Scholar
  38. 38.
    Talla A, Driessen B, Straathof NJW, Milroy LG, Brunsveld L, Hessel V, Noel T (2015). Adv Synth Catal 357:2180–2186CrossRefGoogle Scholar
  39. 39.
    Ott D, Borukhova S, Hessel V (2016). Green Chem 18:1096–1116CrossRefGoogle Scholar
  40. 40.
    Hessel V (2016). Green Proc Synth 5:111–112Google Scholar
  41. 41.
    Gursel IV, Nol T, Wang Q, Hessel V (2015). Green Chem 17:2012–2026CrossRefGoogle Scholar
  42. 42.
    Gemoets HPL, Su YH, Shang MJ, Hessel V, Luque R, Noel T (2016). Chem Soc Rev 45:83–117CrossRefGoogle Scholar
  43. 43.
    Lukas TJ, Prystowsky MB, Erickson BW (1981). Proc Natl Acad Sci USA 78:2791–2795CrossRefGoogle Scholar
  44. 44.
    Dryland, A., Sheppard, R. C J Chem Soc Perkin Trans 1 1986, 125–137Google Scholar
  45. 45.
    Atherton E, Holder JL, Meldal M, Scheppard RC, Valerio RM (1988). J Chem Soc Perkin Trans 1:2887–2894CrossRefGoogle Scholar
  46. 46.
    Eberle AN, Atherton E, Dryland A, Sheppard RC (1986). J Chem Soc Perkin Trans 1:361–367CrossRefGoogle Scholar
  47. 47.
    Collins JM, Porter KA, Singh SK, Vanier GS (2014). Org Lett 16:940–943CrossRefGoogle Scholar
  48. 48.
    Chatterjee J, Laufer B, Kessler H (2012). Nature Protoc 7:432–444CrossRefGoogle Scholar
  49. 49.
    Bacsa B, Horvati K, Bosze S, Andreae F, Kappe CO (2008). J Org Chem 73:7532–7542CrossRefGoogle Scholar
  50. 50.
    Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009). Chem Eur J 15:9394–9403CrossRefGoogle Scholar
  51. 51.
    Malesevic M, Strijowski U, Bachle D, Sewald N (2004). J Biotechnol 112:73–77CrossRefGoogle Scholar
  52. 52.
    Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N (2010). J Org Chem 75:6953–6960CrossRefGoogle Scholar
  53. 53.
    Nahrwold M, Bogner T, Eissler S, Verma S, Sewald N (2010). Org Lett 12:1064–1067CrossRefGoogle Scholar
  54. 54.
    Eissler S, Stoncius A, Nahrwold M, Sewald N (2006). Synthesis:3747–3789Google Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  • Aliz Szloszár
    • 1
  • István M. Mándity
    • 1
  • Ferenc Fülöp
    • 1
    • 2
  1. 1.Institute of Pharmaceutical ChemistryUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesSzegedHungary

Personalised recommendations