Skip to main content
Log in

Esterification of benzoic acid in a continuous flow microwave reactor

  • Review
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The direct esterification of benzoic acid with a series of aliphatic alcohols was performed in a continuous flow microwave (MW) reactor. In the first stage, the reactivity of the alcohols towards benzoic acid was mapped in a batch MW reactor. Then, the different esterifications were optimized in the continuous reactor. All parameters including the temperature could be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de la Hoz A, Loupy A (2012) Microwaves in organic synthesis, vol 1. 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  2. Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  3. Kappe CO, Dallinger D (2006). Nat Rev Drug Discov 5:51–63

    Article  CAS  Google Scholar 

  4. Kiss NZ, Bálint E, Keglevich G (2016) Microwave-assisted syntheses in organic chemistry. In: Keglevich G (ed) Milestones in microwave chemistry. Springer, Switzerland, pp 11–45

    Chapter  Google Scholar 

  5. Bergamelli F, Iannelli M, Marafie JA, Moseley JD (2010). Org Process Res Dev 14:926–930

    Article  CAS  Google Scholar 

  6. Bowman MD, Holcomb JL, Kormos CM, Leadbeater NE, Williams VA (2008). Org Process Res Dev 12:41–57

    Article  CAS  Google Scholar 

  7. de la Hoz A, Díaz-Ortiz A (2017) Nonconventional techniques in sustainable flow chemistry. In: Vaccaro L (ed) Sustainable flow chemistry: methods and applications. Wiley, Weinheim, pp 219–248

  8. Bálint E, Keglevich G (2016) The spread of the application of the microwave technique in organic synthesis. In: Keglevich G (ed) Milestones in microwave chemistry. Springer, Switzerland, pp 1–10

    Google Scholar 

  9. Baxendale I, Hayward J, Ley S (2007). Comb Chem High Throughput Screen 10:802–836

    Article  CAS  Google Scholar 

  10. Moseley JD (2010) Microwave heating as a tool for process chemistry. In: Leadbeater N (ed) Microwave heating as a tool for sustainable chemistry. CRC press, New York, pp 105–147

  11. Keglevich G, Sallay P, Greiner I (2008). Hung Chem J 63:278–283

    CAS  Google Scholar 

  12. Strauss CR (1999). Aust J Chem 52:83–96

    Article  CAS  Google Scholar 

  13. Estel L, Poux M, Benamara N, Polaerta I (2017). Chem Eng Process 113:56–64

    Article  CAS  Google Scholar 

  14. Öhrngren P, Fardost A, Russo F, Schanche J-S, Fagrell M, Larhed M (2012). Org Process Res Dev 16:1053–1063

    Article  Google Scholar 

  15. Rydfjord J, Svensson F, Fagrell M, Savmarker J, Thulin M, Larhed M (2013). Beilstein J Org Chem 9:2079–2087

    Article  Google Scholar 

  16. In Patai S (ed) (1969) The chemistry of carboxyl acids and esters. Wiley, Chichester

    Google Scholar 

  17. Otera J (1993). Chem Rev 93:1449–1470

    Article  CAS  Google Scholar 

  18. In Otera J, Nishikido J (eds) (2010) Esterification: methods, reactions, and applications. Wiley, Weinheim

    Google Scholar 

  19. Bagley MC, Dwyer JE, Baashen M, Dix MC, Murziani PGS, Rokicki MJ, Kipling D, Davis T (2016). Org Biomol Chem 14:947–956

    Article  CAS  Google Scholar 

  20. Bamoharram FF, Heravi MM, Ebrahimi J, Ahmadpour A, Zebarjad M (2011). Chin J Catal 32:782–788

    Article  CAS  Google Scholar 

  21. Gedye RN, Smith FE, Westaway KC (1988). Can J Chem 66:17–26

    Article  CAS  Google Scholar 

  22. Shi Z-H, Li N-G, Tang Y-P, Shi Q-P, Zhang W, Zhang P-X, Li W, Dong Z-X, Duan J-A (2015). Asian J Chem 27:1351–1354

    Article  CAS  Google Scholar 

  23. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986). Tetrahedron Lett 27:279–282

    Article  CAS  Google Scholar 

  24. Pérez ER, Carnevalli NC, Cordeiro PJ, Rodrigues-Filho UP, Franco DW (2011). Org Prep Proced Int 33:395–400

    Article  Google Scholar 

  25. Yang Q, Wang X-J, Li Z-Y, Sun L, You Q-D (2008). Synth Commun 38:4107–4115

    Article  CAS  Google Scholar 

  26. Rivero-Buceta E, Carrero P, Doyagüez EG, Madrona A, Quesada E, Camarasa MJ, Peréz-Pérez MJ, Pieter Leyssen P, Paeshuyse J, Balzarini J, Neyts J, San-Félix A (2015). Eur J Med Chem 92:656–671

    Article  CAS  Google Scholar 

  27. Shintre SA, Ramjugernath D, Singh P, Mocktar C, Koorbanally NA (2017). Med Chem Res 26:484–498

    Article  CAS  Google Scholar 

  28. Samanta S, Lim TL, Lam Y (2013). Chem Med Chem 8:994–1001

    Article  CAS  Google Scholar 

  29. Fabian L, Gómez M, Kuran JAC, Moltrasio G, Moglioni A (2014). Synth Commun 44:2386–2392

    Article  CAS  Google Scholar 

  30. Shi H, Zhu W, Li H, Liu H, Zhang M, Yan Y, Wang Z (2010). Catal Commun 11:588–591

    Article  CAS  Google Scholar 

  31. Chen S-T, Chiou S-H, Wang K-T (1990) J Chem Soc Chem Commun 807–809

  32. Cablewski T, Faux AF, Strauss CR (1994). J Org Chem 59:3408–3412

    Article  CAS  Google Scholar 

  33. Pipus G, Plazl I, Koloini T (2000). Chem Eng J 76:239–245

    Article  CAS  Google Scholar 

  34. Krull M, Moschhaeuser R (2012) Continuous method for producing esters of aromatic carboxylic acids. U.S. Patent 0088918, Apr. 12, 2012

  35. Adeyemi A, Bergman J, Branalt J, Savmarker J, Larhed M (2017). Org Process Res Dev 21:947–955

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The above project was supported by the Hungarian Scientific Research Fund (PD111895), the Hungarian Research Development and Innovation Fund (K119202) and the National Research, Development and Innovation Fund of Hungary in the frame of FIEK_16-1-2016-0007 (Higher Education and Industrial Cooperation Center) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Keglevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajti, Á., Tóth, N., Bálint, E. et al. Esterification of benzoic acid in a continuous flow microwave reactor. J Flow Chem 8, 11–19 (2018). https://doi.org/10.1007/s41981-018-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0001-x

Keywords

Navigation