Abstract
Let R and S be rings and \(_RC_S\) a semidualizing bimodule. For a subcategory \({\mathcal {X}}\) of the Auslander class \({\mathcal {A}}_C(S)\) containing all projective and C-injective modules, we show that a module \(N\in {\mathcal {A}}_C(S)\) if and only if there exists an exact sequence \(\cdots \rightarrow X_i\rightarrow \cdots \rightarrow X_1\rightarrow X_0\rightarrow X^0\rightarrow X^1\rightarrow \cdots \rightarrow X^i\rightarrow \cdots \) in \(\mathrm{Mod}\,S\) with all \(X_i,X^i\) in \({\mathcal {X}}\) such that it remains exact after applying the functor \(\mathrm{Hom}_S(-,E)\) for any C-injective module E and \(N\cong \mathrm{Im}(X_0\rightarrow X^0)\). For a subcategory \({\mathcal {Y}}\) of the Bass class \({\mathcal {B}}_C(R)\) containing all injective and C-projective modules, we show that a module \(M\in {\mathcal {B}}_C(R)\) if and only if there exists an exact sequence \(\cdots \rightarrow Y_i\rightarrow \cdots \rightarrow Y_1\rightarrow Y_0\rightarrow Y^0\rightarrow Y^1\rightarrow \cdots \rightarrow Y^i\rightarrow \cdots \) in \(\mathrm{Mod}\,R\) with all \(Y_i,Y^i\) in \({\mathcal {Y}}\) such that it remains exact after applying the functor \(\mathrm{Hom}_S(Q,-)\) for any C-projective module Q and \(M\cong \mathrm{Im}(Y_0\rightarrow Y^0)\). We apply these results to comparison of some relative homological dimensions.
This is a preview of subscription content, access via your institution.
References
- 1.
Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules. J. Math. Kyoto Univ. 45, 287–306 (2005)
- 2.
Avramov, L.L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. 75, 241–270 (1997)
- 3.
Christensen, L.W.: Gorenstein Dimensions. Lecture Notes in Mathematics, vol. 1747. Springer, Berlin (2000)
- 4.
Christensen, L.W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353, 1839–1883 (2001)
- 5.
Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31, 267–284 (1972)
- 6.
Holm, H., Jøgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205, 423–445 (2006)
- 7.
Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47, 781–808 (2007)
- 8.
Huang, Z.Y.: Proper resolutions and Gorenstein categories. J. Algebra 393, 142–169 (2013)
- 9.
Huang, Z.Y.: Homological dimensions relative to preresolving subcategories. Kyoto J. Math. 54, 727–757 (2014)
- 10.
Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106, 5–22 (2010)
- 11.
Tang, X., Huang, Z.Y.: Homological aspects of the dual Auslander transpose. Forum Math. 27, 3717–3743 (2015)
- 12.
Tang, X., Huang, Z.Y.: Homological aspects of the dual Auslander transpose II. Kyoto J. Math. 57, 17–53 (2017)
- 13.
Tang, X., Huang, Z.Y.: Homological aspects of the adjoint cotranspose. Colloq. Math. 150, 293–311 (2017)
- 14.
Tang, X., Huang, Z.Y.: Homological invariants related to semidualizing bimodules. Colloq. Math. 156, 135–151 (2019)
- 15.
Xu, J.Z.: Flat Covers of Modules. Lecture Notes in Mathematics, vol. 1634. Springer, Berlin (1996)
Acknowledgements
The authors thank the referee for useful suggestions.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by Ergun Yalcin.
Rights and permissions
About this article
Cite this article
Huang, Y., Song, W. Some Characterizations of Auslander and Bass Classes. Bull. Iran. Math. Soc. (2021). https://doi.org/10.1007/s41980-020-00517-z
Received:
Accepted:
Published:
Keywords
- Semidualizing bimodules
- Auslander classes
- Bass classes
- Relative homological dimensions
Mathematics Subject Classification
- 18G25
- 16E10